No Arabic abstract
A popular natural language processing task decades ago, word alignment has been dominated until recently by GIZA++, a statistical method based on the 30-year-old IBM models. Though recent years have finally seen Giza++ performance bested, the new methods primarily rely on large machine translation models, massively multilingual language models, or supervision from Giza++ alignments itself. We introduce Embedding-Enhanced Giza++, and outperform Giza++ without any of the aforementioned factors. Taking advantage of monolingual embedding space geometry of the source and target language only, we exceed Giza++s performance in every tested scenario for three languages. In the lowest-resource scenario of only 500 lines of bitext, we improve performance over Giza++ by 10.9 AER. Our method scales monotonically outperforming Giza++ for all tested scenarios between 500 and 1.9 million lines of bitext. Our code will be made publicly available.
Many NLP applications, such as biomedical data and technical support, have 10-100 million tokens of in-domain data and limited computational resources for learning from it. How should we train a language model in this scenario? Most language modeling research considers either a small dataset with a closed vocabulary (like the standard 1 million token Penn Treebank), or the whole web with byte-pair encoding. We show that for our target setting in English, initialising and freezing input embeddings using in-domain data can improve language model performance by providing a useful representation of rare words, and this pattern holds across several different domains. In the process, we show that the standard convention of tying input and output embeddings does not improve perplexity when initializing with embeddings trained on in-domain data.
In this paper, we introduce ``Embedding Barrier, a phenomenon that limits the monolingual performance of multilingual models on low-resource languages having unique typologies. We build `BanglaBERT, a Bangla language model pretrained on 18.6 GB Internet-crawled data and benchmark on five standard NLU tasks. We discover a significant drop in the performance of the state-of-the-art multilingual model (XLM-R) from BanglaBERT and attribute this to the Embedding Barrier through comprehensive experiments. We identify that a multilingual models performance on a low-resource language is hurt when its writing script is not similar to any of the high-resource languages. To tackle the barrier, we propose a straightforward solution by transcribing languages to a common script, which can effectively improve the performance of a multilingual model for the Bangla language. As a bi-product of the standard NLU benchmarks, we introduce a new downstream dataset on natural language inference (NLI) and show that BanglaBERT outperforms previous state-of-the-art results on all tasks by up to 3.5%. We are making the BanglaBERT language model and the new Bangla NLI dataset publicly available in the hope of advancing the community. The resources can be found at url{https://github.com/csebuetnlp/banglabert}.
Large pre-trained sentence encoders like BERT start a new chapter in natural language processing. A common practice to apply pre-trained BERT to sequence classification tasks (e.g., classification of sentences or sentence pairs) is by feeding the embedding of [CLS] token (in the last layer) to a task-specific classification layer, and then fine tune the model parameters of BERT and classifier jointly. In this paper, we conduct systematic analysis over several sequence classification datasets to examine the embedding values of [CLS] token before the fine tuning phase, and present the biased embedding distribution issue---i.e., embedding values of [CLS] concentrate on a few dimensions and are non-zero centered. Such biased embedding brings challenge to the optimization process during fine-tuning as gradients of [CLS] embedding may explode and result in degraded model performance. We further propose several simple yet effective normalization methods to modify the [CLS] embedding during the fine-tuning. Compared with the previous practice, neural classification model with the normalized embedding shows improvements on several text classification tasks, demonstrates the effectiveness of our method.
Byte-pair encoding (BPE) is a ubiquitous algorithm in the subword tokenization process of language models. BPE provides multiple benefits, such as handling the out-of-vocabulary problem and reducing vocabulary sparsity. However, this process is defined from the pre-training data statistics, making the tokenization on different domains susceptible to infrequent spelling sequences (e.g., misspellings as in social media or character-level adversarial attacks). On the other hand, though robust to misspellings, pure character-level models often lead to unreasonably large sequences and make it harder for the model to learn meaningful contiguous characters. We propose a character-based subword module (char2subword) that learns the subword embedding table in pre-trained models like BERT to alleviate these challenges. Our char2subword module builds representations from characters out of the subword vocabulary, and it can be used as a drop-in replacement of the subword embedding table. The module is robust to character-level alterations such as misspellings, word inflection, casing, and punctuation. We integrate it further with BERT through pre-training while keeping BERT transformer parameters fixed. We show our methods effectiveness by outperforming mBERT on the linguistic code-switching evaluation (LinCE) benchmark.
In human-computer conversation systems, the context of a user-issued utterance is particularly important because it provides useful background information of the conversation. However, it is unwise to track all previous utterances in the current session as not all of them are equally important. In this paper, we address the problem of session segmentation. We propose an embedding-enhanced TextTiling approach, inspired by the observation that conversation utterances are highly noisy, and that word embeddings provide a robust way of capturing semantics. Experimental results show that our approach achieves better performance than the TextTiling, MMD approaches.