Do you want to publish a course? Click here

ScaleFreeCTR: MixCache-based Distributed Training System for CTR Models with Huge Embedding Table

249   0   0.0 ( 0 )
 Added by Huifeng Guo
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Because of the superior feature representation ability of deep learning, various deep Click-Through Rate (CTR) models are deployed in the commercial systems by industrial companies. To achieve better performance, it is necessary to train the deep CTR models on huge volume of training data efficiently, which makes speeding up the training process an essential problem. Different from the models with dense training data, the training data for CTR models is usually high-dimensional and sparse. To transform the high-dimensional sparse input into low-dimensional dense real-value vectors, almost all deep CTR models adopt the embedding layer, which easily reaches hundreds of GB or even TB. Since a single GPU cannot afford to accommodate all the embedding parameters, when performing distributed training, it is not reasonable to conduct the data-parallelism only. Therefore, existing distributed training platforms for recommendation adopt model-parallelism. Specifically, they use CPU (Host) memory of servers to maintain and update the embedding parameters and utilize GPU worker to conduct forward and backward computations. Unfortunately, these platforms suffer from two bottlenecks: (1) the latency of pull & push operations between Host and GPU; (2) parameters update and synchronization in the CPU servers. To address such bottlenecks, in this paper, we propose the ScaleFreeCTR: a MixCache-based distributed training system for CTR models. Specifically, in SFCTR, we also store huge embedding table in CPU but utilize GPU instead of CPU to conduct embedding synchronization efficiently. To reduce the latency of data transfer between both GPU-Host and GPU-GPU, the MixCache mechanism and Virtual Sparse Id operation are proposed. Comprehensive experiments and ablation studies are conducted to demonstrate the effectiveness and efficiency of SFCTR.



rate research

Read More

Tables are widely used with various structures to organize and present data. Recent attempts on table understanding mainly focus on relational tables, yet overlook to other common table structures. In this paper, we propose TUTA, a unified pre-training architecture for understanding generally structured tables. Noticing that understanding a table requires spatial, hierarchical, and semantic information, we enhance transformers with three novel structure-aware mechanisms. First, we devise a unified tree-based structure, called a bi-dimensional coordinate tree, to describe both the spatial and hierarchical information of generally structured tables. Upon this, we propose tree-based attention and position embedding to better capture the spatial and hierarchical information. Moreover, we devise three progressive pre-training objectives to enable representations at the token, cell, and table levels. We pre-train TUTA on a wide range of unlabeled web and spreadsheet tables and fine-tune it on two critical tasks in the field of table structure understanding: cell type classification and table type classification. Experiments show that TUTA is highly effective, achieving state-of-the-art on five widely-studied datasets.
Click-Through Rate (CTR) prediction is critical for industrial recommender systems, where most deep CTR models follow an Embedding & Feature Interaction paradigm. However, the majority of methods focus on designing network architectures to better capture feature interactions while the feature embedding, especially for numerical features, has been overlooked. Existing approaches for numerical features are difficult to capture informative knowledge because of the low capacity or hard discretization based on the offline expertise feature engineering. In this paper, we propose a novel embedding learning framework for numerical features in CTR prediction (AutoDis) with high model capacity, end-to-end training and unique representation properties preserved. AutoDis consists of three core components: meta-embeddings, automatic discretization and aggregation. Specifically, we propose meta-embeddings for each numerical field to learn global knowledge from the perspective of field with a manageable number of parameters. Then the differentiable automatic discretization performs soft discretization and captures the correlations between the numerical features and meta-embeddings. Finally, distinctive and informative embeddings are learned via an aggregation function. Comprehensive experiments on two public and one industrial datasets are conducted to validate the effectiveness of AutoDis. Moreover, AutoDis has been deployed onto a mainstream advertising platform, where online A/B test demonstrates the improvement over the base model by 2.1% and 2.7% in terms of CTR and eCPM, respectively. In addition, the code of our framework is publicly available in MindSpore(https://gitee.com/mindspore/mindspore/tree/master/model_zoo/research/recommend/autodis).
Answering natural language questions over tables is usually seen as a semantic parsing task. To alleviate the collection cost of full logical forms, one popular approach focuses on weak supervision consisting of denotations instead of logical forms. However, training semantic parsers from weak supervision poses difficulties, and in addition, the generated logical forms are only used as an intermediate step prior to retrieving the denotation. In this paper, we present TAPAS, an approach to question answering over tables without generating logical forms. TAPAS trains from weak supervision, and predicts the denotation by selecting table cells and optionally applying a corresponding aggregation operator to such selection. TAPAS extends BERTs architecture to encode tables as input, initializes from an effective joint pre-training of text segments and tables crawled from Wikipedia, and is trained end-to-end. We experiment with three different semantic parsing datasets, and find that TAPAS outperforms or rivals semantic parsing models by improving state-of-the-art accuracy on SQA from 55.1 to 67.2 and performing on par with the state-of-the-art on WIKISQL and WIKITQ, but with a simpler model architecture. We additionally find that transfer learning, which is trivial in our setting, from WIKISQL to WIKITQ, yields 48.7 accuracy, 4.2 points above the state-of-the-art.
133 - Wei Guo , Rong Su , Renhao Tan 2021
CTR prediction, which aims to estimate the probability that a user will click an item, plays a crucial role in online advertising and recommender system. Feature interaction modeling based and user interest mining based methods are the two kinds of most popular techniques that have been extensively explored for many years and have made great progress for CTR prediction. However, (1) feature interaction based methods which rely heavily on the co-occurrence of different features, may suffer from the feature sparsity problem (i.e., many features appear few times); (2) user interest mining based methods which need rich user behaviors to obtain users diverse interests, are easy to encounter the behavior sparsity problem (i.e., many users have very short behavior sequences). To solve these problems, we propose a novel module named Dual Graph enhanced Embedding, which is compatible with various CTR prediction models to alleviate these two problems. We further propose a Dual Graph enhanced Embedding Neural Network (DG-ENN) for CTR prediction. Dual Graph enhanced Embedding exploits the strengths of graph representation with two carefully designed learning strategies (divide-and-conquer, curriculum-learning-inspired organized learning) to refine the embedding. We conduct comprehensive experiments on three real-world industrial datasets. The experimental results show that our proposed DG-ENN significantly outperforms state-of-the-art CTR prediction models. Moreover, when applying to state-of-the-art CTR prediction models, Dual graph enhanced embedding always obtains better performance. Further case studies prove that our proposed dual graph enhanced embedding could alleviate the feature sparsity and behavior sparsity problems. Our framework will be open-source based on MindSpore in the near future.
The graph convolutional network (GCN) is a go-to solution for machine learning on graphs, but its training is notoriously difficult to scale both in terms of graph size and the number of model parameters. Although some work has explored training on large-scale graphs (e.g., GraphSAGE, ClusterGCN, etc.), we pioneer efficient training of large-scale GCN models (i.e., ultra-wide, overparameterized models) with the proposal of a novel, distributed training framework. Our proposed training methodology, called GIST, disjointly partitions the parameters of a GCN model into several, smaller sub-GCNs that are trained independently and in parallel. In addition to being compatible with any GCN architecture, GIST improves model performance, scales to training on arbitrarily large graphs, significantly decreases wall-clock training time, and enables the training of markedly overparameterized GCN models. Remarkably, with GIST, we train an astonishgly-wide 32,768-dimensional GraphSAGE model, which exceeds the capacity of a single GPU by a factor of 8X, to SOTA performance on the Amazon2M dataset.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا