Do you want to publish a course? Click here

Weakly Reversible CF-Decompositions of Chemical Kinetic Systems

106   0   0.0 ( 0 )
 Added by Bryan Hernandez
 Publication date 2021
  fields
and research's language is English




Ask ChatGPT about the research

This paper studies chemical kinetic systems which decompose into weakly reversible complex factorizable (CF) systems. Among power law kinetic systems, CF systems (denoted as PL-RDK systems) are those where branching reactions of a reactant complex have identical rows in the kinetic order matrix. Mass action and generalized mass action systems (GMAS) are well-known examples. Schmitzs global carbon cycle model is a previously studied non-complex factorizable (NF) power law system (denoted as PL-NDK). We derive novel conditions for the existence of weakly reversible CF-decompositions and present an algorithm for verifying these conditions. We discuss methods for identifying independent decompositions, i.e., those where the stoichiometric subspaces of the subnetworks form a direct sum, as such decompositions relate positive equilibria sets of the subnetworks to that of the whole network. We then use the results to determine the positive equilibria sets of PL-NDK systems which admit an independent weakly reversible decomposition into PL-RDK systems of PLP type, i.e., the positive equilibria are log-parametrized, which is a broad generalization of a Deficiency Zero Theorem of Fortun et al. (2019).

rate research

Read More

The fundamental decomposition of a chemical reaction network (also called its $mathscr{F}$-decomposition) is the set of subnetworks generated by the partition of its set of reactions into the fundamental classes introduced by Ji and Feinberg in 2011 as the basis of their higher deficiency algorithm for mass action systems. The first part of this paper studies the properties of the $mathscr{F}$-decomposition, in particular, its independence (i.e., the networks stoichiometric subspace is the direct sum of the subnetworks stoichiometric subspaces) and its incidence-independence (i.e., the image of the networks incidence map is the direct sum of the incidence maps images of the subnetworks). We derive necessary and sufficient conditions for these properties and identify network classes where the $mathscr{F}$-decomposition coincides with other known decompositions. The second part of the paper applies the above-mentioned results to improve the Multistationarity Algorithm for power-law kinetic systems (MSA), a general computational approach that we introduced in previous work. We show that for systems with non-reactant determined interactions but with an independent $mathscr{F}$-decomposition, the transformation to a dynamically equivalent system with reactant-determined interactions -- required in the original MSA -- is not necessary. We illustrate this improvement with the subnetwork of Schmitzs carbon cycle model recently analyzed by Fortun et al.
This paper presents novel decomposition classes of chemical reaction networks (CRNs) derived from S-system kinetics. Based on the network decomposition theory initiated by Feinberg in 1987, we introduce the concept of incidence independent decompositions and develop the theory of $mathscr{C}$- and $mathscr{C}^*$- decompositions which partition the set of complexes and the set of nonzero complexes respectively, including their structure theorems in terms of linkage classes. Analogous to Feinbergs independent decomposition, we demonstrate the important relationship between sets of complex balance equilibria for an incidence independent decomposition of weakly reversible subnetworks for any kinetics. We show that the $mathscr{C}^*$-decompositions are also incidence independent. We also introduce in this paper a new realization for an S-system that is analyzed using a newly defined class of species coverable CRNs. This led to the extension of the deficiency formula and characterization of fundamental decompositions of species decomposable reaction networks.
Mass-action kinetics is frequently used in systems biology to model the behaviour of interacting chemical species. Many important dynamical properties are known to hold for such systems if they are weakly reversible and have a low deficiency. In particular, the Deficiency Zero and Deficiency One Theorems guarantee strong regularity with regards to the number and stability of positive equilibrium states. It is also known that chemical reaction networks with disparate reaction structure can exhibit the same qualitative dynamics. The theory of linear conjugacy encapsulates the cases where this relationship is captured by a linear transformation. In this paper, we propose a mixed-integer linear programming algorithm capable of determining weakly reversible reaction networks with a minimal deficiency which are linearly conjugate to a given reaction network.
Very often, models in biology, chemistry, physics, and engineering are systems of polynomial or power-law ordinary differential equations, arising from a reaction network. Such dynamical systems can be generated by many different reaction networks. On the other hand, networks with special properties (such as reversibility or weak reversibility) are known or conjectured to give rise to dynamical systems that have special properties: existence of positive steady states, persistence, permanence, and (for well-chosen parameters) complex balancing or detailed balancing. These last two are related to thermodynamic equilibrium, and therefore the positive steady states are unique and stable. We describe a computationally efficient characterization of polynomial or power-law dynamical systems that can be obtained as complex-balanced, detailed-balanced, weakly reversible, and reversible mass-action systems.
A chemical reaction network (CRN) is composed of reactions that can be seen as interactions among entities called species, which exist within the system. Endowed with kinetics, CRN has a corresponding set of ordinary differential equations (ODEs). In Chemical Reaction Network Theory, we are interested with connections between the structure of the CRN and qualitative properties of the corresponding ODEs. One of the results in Decomposition Theory of CRNs is that the intersection of the sets of positive steady states of the subsystems is equal to the set of positive steady states of the whole system, if the decomposition is independent. Hence, computational approach using independent decompositions can be used as an efficient tool in studying large systems. In this work, we provide a necessary and sufficient condition for the existence of a nontrivial independent decomposition of a CRN, which leads to a novel step-by-step method to obtain such decomposition, if it exists. We also illustrate these results using real-life examples. In particular, we show that a CRN of a popular model of anaerobic yeast fermentation pathway has a nontrivial independent decomposition, while a particular biological system, which is a metabolic network with one positive feedforward and a negative feedback has none. Finally, we analyze properties of steady states of reaction networks of specific influenza virus models.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا