Do you want to publish a course? Click here

Computing Weakly Reversible Linearly Conjugate Chemical Reaction Networks with Minimal Deficiency

186   0   0.0 ( 0 )
 Added by Matthew Johnston
 Publication date 2012
  fields
and research's language is English




Ask ChatGPT about the research

Mass-action kinetics is frequently used in systems biology to model the behaviour of interacting chemical species. Many important dynamical properties are known to hold for such systems if they are weakly reversible and have a low deficiency. In particular, the Deficiency Zero and Deficiency One Theorems guarantee strong regularity with regards to the number and stability of positive equilibrium states. It is also known that chemical reaction networks with disparate reaction structure can exhibit the same qualitative dynamics. The theory of linear conjugacy encapsulates the cases where this relationship is captured by a linear transformation. In this paper, we propose a mixed-integer linear programming algorithm capable of determining weakly reversible reaction networks with a minimal deficiency which are linearly conjugate to a given reaction network.



rate research

Read More

This paper studies chemical kinetic systems which decompose into weakly reversible complex factorizable (CF) systems. Among power law kinetic systems, CF systems (denoted as PL-RDK systems) are those where branching reactions of a reactant complex have identical rows in the kinetic order matrix. Mass action and generalized mass action systems (GMAS) are well-known examples. Schmitzs global carbon cycle model is a previously studied non-complex factorizable (NF) power law system (denoted as PL-NDK). We derive novel conditions for the existence of weakly reversible CF-decompositions and present an algorithm for verifying these conditions. We discuss methods for identifying independent decompositions, i.e., those where the stoichiometric subspaces of the subnetworks form a direct sum, as such decompositions relate positive equilibria sets of the subnetworks to that of the whole network. We then use the results to determine the positive equilibria sets of PL-NDK systems which admit an independent weakly reversible decomposition into PL-RDK systems of PLP type, i.e., the positive equilibria are log-parametrized, which is a broad generalization of a Deficiency Zero Theorem of Fortun et al. (2019).
We present a computational method for performing structural translation, which has been studied recently in the context of analyzing the steady states and dynamical behavior of mass-action systems derived from biochemical reaction networks. Our procedure involves solving a binary linear programming problem where the decision variables correspond to interactions between the reactions of the original network. We call the resulting network a reaction-to-reaction graph and formalize how such a construction relates to the original reaction network and the structural translation. We demonstrate the efficacy and efficiency of the algorithm by running it on 508 networks from the European Bioinformatics Institutes BioModels database. We also summarize how this work can be incorporated into recently proposed algorithms for establishing mono and multistationarity in biochemical reaction systems.
240 - Matthew D. Johnston 2013
Many biochemical and industrial applications involve complicated networks of simultaneously occurring chemical reactions. Under the assumption of mass action kinetics, the dynamics of these chemical reaction networks are governed by systems of polynomial ordinary differential equations. The steady states of these mass action systems have been analysed via a variety of techniques, including elementary flux mode analysis, algebraic techniques (e.g. Groebner bases), and deficiency theory. In this paper, we present a novel method for characterizing the steady states of mass action systems. Our method explicitly links a networks capacity to permit a particular class of steady states, called toric steady states, to topological properties of a related network called a translated chemical reaction network. These networks share their reaction stoichiometries with their source network but are permitted to have different complex stoichiometries and different network topologies. We apply the results to examples drawn from the biochemical literature.
We derive a reduction formula for singularly perturbed ordinary differential equations (in the sense of Tikhonov and Fenichel) with a known parameterization of the critical manifold. No a priori assumptions concerning separation of slow and fast variables are made, or necessary.We apply the theoretical results to chemical reaction networks with mass action kinetics admitting slow and fast reactions. For some relevant classes of such systems there exist canonical parameterizations of the variety of stationary points, hence the theory is applicable in a natural manner. In particular we obtain a closed form expression for the reduced system when the fast subsystem admits complex balanced steady states.
A chemical reaction network (CRN) is composed of reactions that can be seen as interactions among entities called species, which exist within the system. Endowed with kinetics, CRN has a corresponding set of ordinary differential equations (ODEs). In Chemical Reaction Network Theory, we are interested with connections between the structure of the CRN and qualitative properties of the corresponding ODEs. One of the results in Decomposition Theory of CRNs is that the intersection of the sets of positive steady states of the subsystems is equal to the set of positive steady states of the whole system, if the decomposition is independent. Hence, computational approach using independent decompositions can be used as an efficient tool in studying large systems. In this work, we provide a necessary and sufficient condition for the existence of a nontrivial independent decomposition of a CRN, which leads to a novel step-by-step method to obtain such decomposition, if it exists. We also illustrate these results using real-life examples. In particular, we show that a CRN of a popular model of anaerobic yeast fermentation pathway has a nontrivial independent decomposition, while a particular biological system, which is a metabolic network with one positive feedforward and a negative feedback has none. Finally, we analyze properties of steady states of reaction networks of specific influenza virus models.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا