No Arabic abstract
Planets and their host stars carry a long-term memory of their origin in their chemical compositions. Thus, identifying planets formed in different environments improves our understating of planetary formation. Although restricted to detecting exoplanets within the solar vicinity, we might be able to detect planetary systems that formed in small external galaxies and later merged with the Milky Way. In fact, Gaia data have unequivocally shown that the Galaxy underwent several significant minor mergers during its first billion years of formation. The stellar debris of one of these mergers, Gaia-Enceladus (GE), is thought to have built up most of the stellar halo in the solar neighborhood. In this Letter, we investigate the origin of known planet-host stars combining data from the NASA Exoplanet Archive with Gaia EDR3 and large-scale spectroscopic surveys. We adopt a kinematic criterion and identify 42 stars associated with the Milky Ways thick disk and one halo star. The only halo star identified, BD+20 2457, known to harbor two exoplanets, moves on a retrograde and highly eccentric orbit. Its chemical abundance pattern situates the star at the border between the thick disk, the old halo, and accreted populations. Given its orbital parameters and chemical properties, we suggest that BD+20 2457 is likely formed in the protodisk of the Galaxy, but we do not exclude the possibility of the star belonging to the debris of GE. Finally, we estimate a minimum age and mass limit for the star, which has implications for its planetary system and will be tested with future Transiting Exoplanet Survey Satellite observations.
We present a detailed dynamical analysis of the orbital stability of the BD +20 2457 system, which features planets or brown dwarfs moving on relatively eccentric orbits. We find that the system exhibits strong dynamical instability on astronomically short timescales across a wide range of plausible orbital eccentricities, semi-major axes, and inclinations. If the system truly hosts massive planets or brown dwarfs, our results suggest that they must move on orbits significantly different to those proposed in the discovery work. If that is indeed the case, then it is likely that the best-fit orbital solutions for the proposed companions will change markedly as future observations are made. Such observations may result in the solution shifting to a more dynamically-stable regime, potentially one where stability is ensured by mutually resonant motion.
Although the final observations of the Spitzer Warm Mission are currently scheduled for March 2019, it can continue operations through the end of the decade with no loss of photometric precision. As we will show, there is a strong science case for extending the current Warm Mission to December 2020. Spitzer has already made major impacts in the fields of exoplanets (including microlensing events), characterizing near Earth objects, enhancing our knowledge of nearby stars and brown dwarfs, understanding the properties and structure of our Milky Way galaxy, and deep wide-field extragalactic surveys to study galaxy birth and evolution. By extending Spitzer through 2020, it can continue to make ground-breaking discoveries in those fields, and provide crucial support to the NASA flagship missions JWST and WFIRST, as well as the upcoming TESS mission, and it will complement ground-based observations by LSST and the new large telescopes of the next decade. This scientific program addresses NASAs Science Mission Directives objectives in astrophysics, which include discovering how the universe works, exploring how it began and evolved, and searching for life on planets around other stars.
Jovian planet formation has been shown to be strongly correlated with host star metallicity, which is thought to be a proxy for disk solids. Observationally, previous works have indicated that jovian planets preferentially form around stars with solar and super solar metallicities. Given these findings, it is challenging to form planets within metal-poor environments, particularly for hot Jupiters that are thought to form via metallicity-dependent core accretion. Although previous studies have conducted planet searches for hot Jupiters around metal-poor stars, they have been limited due to small sample sizes, which are a result of a lack of high-quality data making hot Jupiter occurrence within the metal-poor regime difficult to constrain until now. We use a large sample of halo stars observed by TESS to constrain the upper limit of hot Jupiter occurrence within the metal-poor regime (-2.0 $leq$ [Fe/H] $leq$ -0.6). Placing the most stringent upper limit on hot Jupiter occurrence, we find the mean 1-$sigma$ upper limit to be 0.18 $%$ for radii 0.8 -2 R$_{rm{Jupiter}}$ and periods $0.5- 10$ days. This result is consistent with previous predictions indicating that there exists a certain metallicity below which no planets can form.
We present here the first release of the open-source python package ExoTETHyS, which aims to provide a stand-alone set of tools for modeling spectro-photometric observations of the transiting exoplanets. In particular, we describe: (1) a new calculator of stellar limb-darkening coefficients that outperforms the existing software by one order of magnitude in terms of light-curve model accuracy, i.e., down to <10 parts per million (ppm); (2) an exact transit light-curve generator based on the entire stellar intensity profile rather than limb-darkening coefficients. New tools will be added in later releases to model various effects in exoplanetary transits and eclipsing binaries. ExoTETHyS is a reference package for high-precision exoplanet atmospheric spectroscopy with the upcoming JWST and ARIEL missions.
By measuring the elemental abundances of a star, we can gain insight into the composition of its initial gas cloud -- the formation site of the star and its planets. Planet formation requires metals, the availability of which is determined by the elemental abundance. In the case where metals are extremely deficient, planet formation can be stifled. To investigate such a scenario requires a large sample of metal-poor stars and a search for planets therein. This paper focuses on the selection and validation of a halo star sample. We select ~17,000 metal-poor halo stars based on their Galactic kinematics, and confirm their low metallicities ([Fe/H] < -0.5), using spectroscopy from the literature. Furthermore, we perform high-resolution spectroscopic observations using LBT/PEPSI and conduct detailed metallicity ([Fe/H]) analyses on a sample of 13 previously known halo stars that also have hot kinematics. We can use the halo star sample presented here to measure the frequency of planets and to test planet formation in extremely metal-poor environments. The result of the planet search and its implications will be presented and discussed in a companion paper by Boley et al.