No Arabic abstract
We present a detailed dynamical analysis of the orbital stability of the BD +20 2457 system, which features planets or brown dwarfs moving on relatively eccentric orbits. We find that the system exhibits strong dynamical instability on astronomically short timescales across a wide range of plausible orbital eccentricities, semi-major axes, and inclinations. If the system truly hosts massive planets or brown dwarfs, our results suggest that they must move on orbits significantly different to those proposed in the discovery work. If that is indeed the case, then it is likely that the best-fit orbital solutions for the proposed companions will change markedly as future observations are made. Such observations may result in the solution shifting to a more dynamically-stable regime, potentially one where stability is ensured by mutually resonant motion.
Planets and their host stars carry a long-term memory of their origin in their chemical compositions. Thus, identifying planets formed in different environments improves our understating of planetary formation. Although restricted to detecting exoplanets within the solar vicinity, we might be able to detect planetary systems that formed in small external galaxies and later merged with the Milky Way. In fact, Gaia data have unequivocally shown that the Galaxy underwent several significant minor mergers during its first billion years of formation. The stellar debris of one of these mergers, Gaia-Enceladus (GE), is thought to have built up most of the stellar halo in the solar neighborhood. In this Letter, we investigate the origin of known planet-host stars combining data from the NASA Exoplanet Archive with Gaia EDR3 and large-scale spectroscopic surveys. We adopt a kinematic criterion and identify 42 stars associated with the Milky Ways thick disk and one halo star. The only halo star identified, BD+20 2457, known to harbor two exoplanets, moves on a retrograde and highly eccentric orbit. Its chemical abundance pattern situates the star at the border between the thick disk, the old halo, and accreted populations. Given its orbital parameters and chemical properties, we suggest that BD+20 2457 is likely formed in the protodisk of the Galaxy, but we do not exclude the possibility of the star belonging to the debris of GE. Finally, we estimate a minimum age and mass limit for the star, which has implications for its planetary system and will be tested with future Transiting Exoplanet Survey Satellite observations.
BD+20 1790 is a young active, metal-rich, late-type K5Ve star. We have undertaken a study of stellar activity and kinematics for this star over the past few years. Previous results show a high level of stellar activity, with the presence of prominence-like structures, spots on the surface and strong flare events, despite the moderate rotational velocity of the star. In addition, radial velocity variations with a semi-amplitude of up to 1 km/s were detected. We investigated the nature of these radial velocity variations, in order to determine whether they are due to stellar activity or the reflex motion of the star induced by a companion. We have analysed high-resolution echelle spectra and also two-band photometry was obtained to produce the light curve and determine the photometric period. Based upon the analysis of the bisector velocity span, as well as spectroscopic indices of chromospheric indicators and taking into account the photometric analysis, we report that the best explanation for the RV variation is the presence of a sub-stellar companion. The Keplerian fit of the RV data yields a solution for a close-in massive planet with an orbital period of 7.78 days. The presence of the close-in massive planet could also be an interpretation for the high level of stellar activity detected. Since the RV data are not part of a planet search program, we can consider our results as a serendipitous evidence of a planetary companion. To date, this is the youngest main sequence star for which a planetary candidate has been reported.
This paper presents the simultaneous Bayesian analysis of the radial velocity and activity indices for the K5Ve active star BD+20 1790, that was proposed to host a close-in massive planet by Hernan-Obispo et al. (2010). The Bayesian analysis supports the hypothesis of a planetary companion. We present a new orbital solution after removing the two main contributions to the stellar jitter, one that varies with the photometric period and another that varies with the synodic period of the star+planet system. We use a new method to determine these jitter components, considering them as a second and third signals in the system. A discussion on possible magnetic star-planet-interaction is included, based on the Bayesian analysis of the activity indices. We propose two possible sources for flare events of this star: one related to the geometry of the system and the relative movement of the star+planet, and a second one purely stochastic source that is related to the evolution of stellar active regions. Also, we observe for the first time the magnetic field of the star, from spectropolarimetric data.
Context. Stellar activity is currently challenging the detection of young planets via the radial velocity (RV) technique. Aims. We attempt to definitively discriminate the nature of the RV variations for the young active K5 star BD+20 1790, for which visible (VIS) RV measurements show divergent results on the existence of a substellar companion. Methods. We compare VIS data with high precision RVs in the near infrared (NIR) range by using the GIANO - B and IGRINS spectrographs. In addition, we present for the first time simultaneous VIS-NIR observations obtained with GIARPS (GIANO - B and HARPS - N) at Telescopio Nazionale Galileo (TNG). Orbital RVs are achromatic, so the RV amplitude does not change at different wavelengths, while stellar activity induces wavelength-dependent RV variations, which are significantly reduced in the NIR range with respect to the VIS. Results. The NIR radial velocity measurements from GIANO - B and IGRINS show an average amplitude of about one quarter with respect to previously published VIS data, as expected when the RV jitter is due to stellar activity. Coeval multi-band photometry surprisingly shows larger amplitudes in the NIR range, explainable with a mixture of cool and hot spots in the same active region. Conclusions. In this work, the claimed massive planet around BD+20 1790 is ruled out by our data. We exploited the crucial role of multi- wavelength spectroscopy when observing young active stars: thanks to facilities like GIARPS that provide simultaneous observations, this method can reach its maximum potential.
Context. The young active star BD +20 1790 is believed to host a substellar companion, revealed by radial-velocity measurements that detected the reflex motion induced on the parent star. Aims. A complete characterisation of the radial-velocity signal is necessary in order to assess its nature. Methods. We used CORALIE spectrograph to obtain precise (~10 m/s) velocity measurements on this active star, while characterizing the bisector span variations. Particular attention was given to correctly sample both the proposed planetary orbital period, of 7.8 days, and the stellar rotation period, of 2.4 days. Results. A smaller radial-velocity signal (with peak-to-peak variations <500 m/s) than had been reported previously was detected, with different amplitude on two different campaigns. A periodicity similar to the rotational period is found on the data, as well as a clear correlation between radial-velocities and bisector span. This evidence points towards a stellar origin of the radial-velocity variations of the star instead of a barycentric movement of the star, and repudiates the reported detection of a hot-Jupiter.