Do you want to publish a course? Click here

Collective flow in single-hit QCD kinetic theory

140   0   0.0 ( 0 )
 Added by Robin T\\\"ornkvist
 Publication date 2021
  fields
and research's language is English




Ask ChatGPT about the research

Motivated by recent interest in collectivity in small systems, we calculate the harmonic flow response to initial geometry deformations within weakly coupled QCD kinetic theory using the first correction to the free-streaming background. We derive a parametric scaling formula that relates harmonic flow in systems of different sizes and different generic initial gluon distributions. We comment on similarities and differences between the full QCD effective kinetic theory and the toy models used previously. Finally we calculate the centrality dependence of the integrated elliptic flow $v_2$ in oxygen-oxygen, proton-lead and proton-proton collision systems.



rate research

Read More

97 - Sunil Jaiswal 2021
Using and comparing kinetic theory and second-order Chapman-Enskog hydrodynamics, we study the non-conformal dynamics of a system undergoing Bjorken expansion. We use the concept of `free-streaming fixed lines for scaled shear and bulk stresses in non-conformal kinetic theory and hydrodynamics, and show that these `fixed lines behave as early-time attractors and repellors of the evolution. In the conformal limit, the free-streaming fixed lines reduce to the well-known fixed points of conformal Bjorken dynamics. A new fixed point in the free streaming regime is identified which lies at the intersection of these fixed lines. Contrary to the conformal scenario, both kinetic theory and hydrodynamics predict the absence of attractor behavior in the normalised shear stress channel. In kinetic theory a far-off-equilibrium attractor is found for the normalised effective longitudinal pressure, driven by rapid longitudinal expansion. Second-order viscous hydrodynamics fails to accurately describe this attractor. From a thorough analysis of the free-streaming dynamics in Chapman-Enskog hydrodynamics we conclude that this failure results from an inaccurate approximation of the fixed lines and a related incorrect description of the nature of the fixed point. A modified anisotropic hydrodynamic description is presented that provides excellent agreement with kinetic theory results and reproduces the far-from-equilibrium attractor for the scaled longitudinal pressure.
High-energy nuclear collisions produce a nonequilibrium plasma of quarks and gluons which thermalizes and exhibits hydrodynamic flow. There are currently no practical frameworks to connect the early particle production in classical field simulations to the subsequent hydrodynamic evolution. We build such a framework using nonequilibrium Greens functions, calculated in QCD kinetic theory, to propagate the initial energy-momentum tensor to the hydrodynamic phase. We demonstrate that this approach can be easily incorporated into existing hydrodynamic simulations, leading to stronger constraints on the energy density at early times and the transport properties of the QCD medium. Based on (conformal) scaling properties of the Greens functions, we further obtain pragmatic bounds for the applicability of hydrodynamics in nuclear collisions.
341 - J. Peralta-Ramos , G. Krein 2012
Using relativistic conformal hydrodynamics coupled to the linear $sigma$ model we study the evolution of matter created in heavy--ion collisions. We focus the study on the influence of the dynamics of the chiral fields on the charged-hadron elliptic flow $v_2$ for a temperature--independent as well as for a temperature--dependent $eta/s$ that is calculated from kinetic theory. We find that $v_2$ is not very sensitive to the coupling of chiral fields to the hydrodynamic evolution, but the temperature dependence of $eta/s$ plays a much bigger role on this observable.
101 - Shu Lin 2021
We derive a quantum kinetic theory for QED including both elastic and inelastic collisions with screening effect. By assuming parity invariance at the lowest order in $hbar$, we find the classical limit of the kinetic theory generalizes the well-known classical kinetic theory to massive case. The resulting classical kinetic theory simplifies when fermion bare mass is much greater than thermal mass. In this case only elastic collision is relevant and screening is only needed for Coulomb scattering. For a given solution to the classical kinetic theory, we find at $O(hbar)$ non-dynamical part of the quantum correction to Wigner functions for fermion and photon, which gives rise to spin polarization for fermion and photon respectively. Other contributions to spin polarizations from dynamical part of the correction to Wigner function are possible when parity violating sources are present.
111 - Han Gao , Zonglin Mo , Shu Lin 2020
We study the photon self-energy in magnetized chiral plasma by solving the response of electromagnetic field perturbations in chiral kinetic theory with Landau level states. With lowest Landau level approximation and in collisionless limit, we find solutions for three particular perturbations: parallel electric field, static perpendicular electric and magnetic field, corresponding to chiral magnetic wave, drift state and tilted state, from which we extract components of photon self-energy in different kinematics. We show no solution is possible for more general field perturbations. We argue this is an artifact of the collisionless limit: while static solution corresponding to drift state and tilted state can be found, they cannot be realized dynamically without interaction between Landau levels. We also discuss possible manifestation of side-jump effect due to both boost and rotation, with the latter due to the presence of background magnetic field.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا