Do you want to publish a course? Click here

Faithfully Explainable Recommendation via Neural Logic Reasoning

99   0   0.0 ( 0 )
 Added by Yikun Xian
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Knowledge graphs (KG) have become increasingly important to endow modern recommender systems with the ability to generate traceable reasoning paths to explain the recommendation process. However, prior research rarely considers the faithfulness of the derived explanations to justify the decision making process. To the best of our knowledge, this is the first work that models and evaluates faithfully explainable recommendation under the framework of KG reasoning. Specifically, we propose neural logic reasoning for explainable recommendation (LOGER) by drawing on interpretable logical rules to guide the path reasoning process for explanation generation. We experiment on three large-scale datasets in the e-commerce domain, demonstrating the effectiveness of our method in delivering high-quality recommendations as well as ascertaining the faithfulness of the derived explanation.



rate research

Read More

Recent research explores incorporating knowledge graphs (KG) into e-commerce recommender systems, not only to achieve better recommendation performance, but more importantly to generate explanations of why particular decisions are made. This can be achieved by explicit KG reasoning, where a model starts from a user node, sequentially determines the next step, and walks towards an item node of potential interest to the user. However, this is challenging due to the huge search space, unknown destination, and sparse signals over the KG, so informative and effective guidance is needed to achieve a satisfactory recommendation quality. To this end, we propose a CoArse-to-FinE neural symbolic reasoning approach (CAFE). It first generates user profiles as coarse sketches of user behaviors, which subsequently guide a path-finding process to derive reasoning paths for recommendations as fine-grained predictions. User profiles can capture prominent user behaviors from the history, and provide valuable signals about which kinds of path patterns are more likely to lead to potential items of interest for the user. To better exploit the user profiles, an improved path-finding algorithm called Profile-guided Path Reasoning (PPR) is also developed, which leverages an inventory of neural symbolic reasoning modules to effectively and efficiently find a batch of paths over a large-scale KG. We extensively experiment on four real-world benchmarks and observe substantial gains in the recommendation performance compared with state-of-the-art methods.
Incorporating knowledge graph into recommender systems has attracted increasing attention in recent years. By exploring the interlinks within a knowledge graph, the connectivity between users and items can be discovered as paths, which provide rich and complementary information to user-item interactions. Such connectivity not only reveals the semantics of entities and relations, but also helps to comprehend a users interest. However, existing efforts have not fully explored this connectivity to infer user preferences, especially in terms of modeling the sequential dependencies within and holistic semantics of a path. In this paper, we contribute a new model named Knowledge-aware Path Recurrent Network (KPRN) to exploit knowledge graph for recommendation. KPRN can generate path representations by composing the semantics of both entities and relations. By leveraging the sequential dependencies within a path, we allow effective reasoning on paths to infer the underlying rationale of a user-item interaction. Furthermore, we design a new weighted pooling operation to discriminate the strengths of different paths in connecting a user with an item, endowing our model with a certain level of explainability. We conduct extensive experiments on two datasets about movie and music, demonstrating significant improvements over state-of-the-art solutions Collaborative Knowledge Base Embedding and Neural Factorization Machine.
By providing explanations for users and system designers to facilitate better understanding and decision making, explainable recommendation has been an important research problem. In this paper, we propose Counterfactual Explainable Recommendation (CountER), which takes the insights of counterfactual reasoning from causal inference for explainable recommendation. CountER is able to formulate the complexity and the strength of explanations, and it adopts a counterfactual learning framework to seek simple (low complexity) and effective (high strength) explanations for the model decision. Technically, for each item recommended to each user, CountER formulates a joint optimization problem to generate minimal changes on the item aspects so as to create a counterfactual item, such that the recommendation decision on the counterfactual item is reversed. These altered aspects constitute the explanation of why the original item is recommended. The counterfactual explanation helps both the users for better understanding and the system designers for better model debugging. Another contribution of the work is the evaluation of explainable recommendation, which has been a challenging task. Fortunately, counterfactual explanations are very suitable for standard quantitative evaluation. To measure the explanation quality, we design two types of evaluation metrics, one from users perspective (i.e. why the user likes the item), and the other from models perspective (i.e. why the item is recommended by the model). We apply our counterfactual learning algorithm on a black-box recommender system and evaluate the generated explanations on five real-world datasets. Results show that our model generates more accurate and effective explanations than state-of-the-art explainable recommendation models.
168 - Lei Li , Yongfeng Zhang , Li Chen 2021
Personalization of natural language generation plays a vital role in a large spectrum of tasks, such as explainable recommendation, review summarization and dialog systems. In these tasks, user and item IDs are important identifiers for personalization. Transformer, which is demonstrated with strong language modeling capability, however, is not personalized and fails to make use of the user and item IDs since the ID tokens are not even in the same semantic space as the words. To address this problem, we present a PErsonalized Transformer for Explainable Recommendation (PETER), on which we design a simple and effective learning objective that utilizes the IDs to predict the words in the target explanation, so as to endow the IDs with linguistic meanings and to achieve personalized Transformer. Besides generating explanations, PETER can also make recommendations, which makes it a unified model for the whole recommendation-explanation pipeline. Extensive experiments show that our small unpretrained model outperforms fine-tuned BERT on the generation task, in terms of both effectiveness and efficiency, which highlights the importance and the nice utility of our design.
Recent years have witnessed the success of deep neural networks in many research areas. The fundamental idea behind the design of most neural networks is to learn similarity patterns from data for prediction and inference, which lacks the ability of cognitive reasoning. However, the concrete ability of reasoning is critical to many theoretical and practical problems. On the other hand, traditional symbolic reasoning methods do well in making logical inference, but they are mostly hard rule-based reasoning, which limits their generalization ability to different tasks since difference tasks may require different rules. Both reasoning and generalization ability are important for prediction tasks such as recommender systems, where reasoning provides strong connection between user history and target items for accurate prediction, and generalization helps the model to draw a robust user portrait over noisy inputs. In this paper, we propose Logic-Integrated Neural Network (LINN) to integrate the power of deep learning and logic reasoning. LINN is a dynamic neural architecture that builds the computational graph according to input logical expressions. It learns basic logical operations such as AND, OR, NOT as neural modules, and conducts propositional logical reasoning through the network for inference. Experiments on theoretical task show that LINN achieves significant performance on solving logical equations and variables. Furthermore, we test our approach on the practical task of recommendation by formulating the task into a logical inference problem. Experiments show that LINN significantly outperforms state-of-the-art recommendation models in Top-K recommendation, which verifies the potential of LINN in practice.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا