Do you want to publish a course? Click here

Rethinking Text Line Recognition Models

337   0   0.0 ( 0 )
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

In this paper, we study the problem of text line recognition. Unlike most approaches targeting specific domains such as scene-text or handwritten documents, we investigate the general problem of developing a universal architecture that can extract text from any image, regardless of source or input modality. We consider two decoder families (Connectionist Temporal Classification and Transformer) and three encoder modules (Bidirectional LSTMs, Self-Attention, and GRCLs), and conduct extensive experiments to compare their accuracy and performance on widely used public datasets of scene and handwritten text. We find that a combination that so far has received little attention in the literature, namely a Self-Attention encoder coupled with the CTC decoder, when compounded with an external language model and trained on both public and internal data, outperforms all the others in accuracy and computational complexity. Unlike the more common Transformer-based models, this architecture can handle inputs of arbitrary length, a requirement for universal line recognition. Using an internal dataset collected from multiple sources, we also expose the limitations of current public datasets in evaluating the accuracy of line recognizers, as the relatively narrow image width and sequence length distributions do not allow to observe the quality degradation of the Transformer approach when applied to the transcription of long lines.



rate research

Read More

Detection and recognition of text in natural images are two main problems in the field of computer vision that have a wide variety of applications in analysis of sports videos, autonomous driving, industrial automation, to name a few. They face common challenging problems that are factors in how text is represented and affected by several environmental conditions. The current state-of-the-art scene text detection and/or recognition methods have exploited the witnessed advancement in deep learning architectures and reported a superior accuracy on benchmark datasets when tackling multi-resolution and multi-oriented text. However, there are still several remaining challenges affecting text in the wild images that cause existing methods to underperform due to there models are not able to generalize to unseen data and the insufficient labeled data. Thus, unlike previous surveys in this field, the objectives of this survey are as follows: first, offering the reader not only a review on the recent advancement in scene text detection and recognition, but also presenting the results of conducting extensive experiments using a unified evaluation framework that assesses pre-trained models of the selected methods on challenging cases, and applies the same evaluation criteria on these techniques. Second, identifying several existing challenges for detecting or recognizing text in the wild images, namely, in-plane-rotation, multi-oriented and multi-resolution text, perspective distortion, illumination reflection, partial occlusion, complex fonts, and special characters. Finally, the paper also presents insight into the potential research directions in this field to address some of the mentioned challenges that are still encountering scene text detection and recognition techniques.
174 - Yao Fu , Hao Zhou , Jiaze Chen 2019
Text attribute transfer is modifying certain linguistic attributes (e.g. sentiment, style, authorship, etc.) of a sentence and transforming them from one type to another. In this paper, we aim to analyze and interpret what is changed during the transfer process. We start from the observation that in many existing models and datasets, certain words within a sentence play important roles in determining the sentence attribute class. These words are referred to as textit{the Pivot Words}. Based on these pivot words, we propose a lexical analysis framework, textit{the Pivot Analysis}, to quantitatively analyze the effects of these words in text attribute classification and transfer. We apply this framework to existing datasets and models and show that: (1) the pivot words are strong features for the classification of sentence attributes; (2) to change the attribute of a sentence, many datasets only requires to change certain pivot words; (3) consequently, many transfer models only perform the lexical-level modification, while leaving higher-level sentence structures unchanged. Our work provides an in-depth understanding of linguistic attribute transfer and further identifies the future requirements and challenges of this taskfootnote{Our code can be found at https://github.com/FranxYao/pivot_analysis}.
299 - Duc Nguyen , Nhan Tran , Hung Le 2019
Convolutional Recurrent Neural Networks (CRNNs) excel at scene text recognition. Unfortunately, they are likely to suffer from vanishing/exploding gradient problems when processing long text images, which are commonly found in scanned documents. This poses a major challenge to goal of completely solving Optical Character Recognition (OCR) problem. Inspired by recently proposed memory-augmented neural networks (MANNs) for long-term sequential modeling, we present a new architecture dubbed Convolutional Multi-way Associative Memory (CMAM) to tackle the limitation of current CRNNs. By leveraging recent memory accessing mechanisms in MANNs, our architecture demonstrates superior performance against other CRNN counterparts in three real-world long text OCR datasets.
Text segmentation is a prerequisite in many real-world text-related tasks, e.g., text style transfer, and scene text removal. However, facing the lack of high-quality datasets and dedicated investigations, this critical prerequisite has been left as an assumption in many works, and has been largely overlooked by current research. To bridge this gap, we proposed TextSeg, a large-scale fine-annotated text dataset with six types of annotations: word- and character-wise bounding polygons, masks and transcriptions. We also introduce Text Refinement Network (TexRNet), a novel text segmentation approach that adapts to the unique properties of text, e.g. non-convex boundary, diverse texture, etc., which often impose burdens on traditional segmentation models. In our TexRNet, we propose text specific network designs to address such challenges, including key features pooling and attention-based similarity checking. We also introduce trimap and discriminator losses that show significant improvement on text segmentation. Extensive experiments are carried out on both our TextSeg dataset and other existing datasets. We demonstrate that TexRNet consistently improves text segmentation performance by nearly 2% compared to other state-of-the-art segmentation methods. Our dataset and code will be made available at https://github.com/SHI-Labs/Rethinking-Text-Segmentation.
Scene text recognition models have advanced greatly in recent years. Inspired by human reading we characterize two important scene text recognition models by measuring their domains i.e. the range of stimulus images that they can read. The domain specifies the ability of readers to generalize to different word lengths, fonts, and amounts of occlusion. These metrics identify strengths and weaknesses of existing models. Relative to the attention-based (Attn) model, we discover that the connectionist temporal classification (CTC) model is more robust to noise and occlusion, and better at generalizing to different word lengths. Further, we show that in both models, adding noise to training images yields better generalization to occlusion. These results demonstrate the value of testing models till they break, complementing the traditional data science focus on optimizing performance.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا