No Arabic abstract
Text attribute transfer is modifying certain linguistic attributes (e.g. sentiment, style, authorship, etc.) of a sentence and transforming them from one type to another. In this paper, we aim to analyze and interpret what is changed during the transfer process. We start from the observation that in many existing models and datasets, certain words within a sentence play important roles in determining the sentence attribute class. These words are referred to as textit{the Pivot Words}. Based on these pivot words, we propose a lexical analysis framework, textit{the Pivot Analysis}, to quantitatively analyze the effects of these words in text attribute classification and transfer. We apply this framework to existing datasets and models and show that: (1) the pivot words are strong features for the classification of sentence attributes; (2) to change the attribute of a sentence, many datasets only requires to change certain pivot words; (3) consequently, many transfer models only perform the lexical-level modification, while leaving higher-level sentence structures unchanged. Our work provides an in-depth understanding of linguistic attribute transfer and further identifies the future requirements and challenges of this taskfootnote{Our code can be found at https://github.com/FranxYao/pivot_analysis}.
The dominant approach to unsupervised style transfer in text is based on the idea of learning a latent representation, which is independent of the attributes specifying its style. In this paper, we show that this condition is not necessary and is not always met in practice, even with domain adversarial training that explicitly aims at learning such disentangled representations. We thus propose a new model that controls several factors of variation in textual data where this condition on disentanglement is replaced with a simpler mechanism based on back-translation. Our method allows control over multiple attributes, like gender, sentiment, product type, etc., and a more fine-grained control on the trade-off between content preservation and change of style with a pooling operator in the latent space. Our experiments demonstrate that the fully entangled model produces better generations, even when tested on new and more challenging benchmarks comprising reviews with multiple sentences and multiple attributes.
Text attribute transfer using non-parallel data requires methods that can perform disentanglement of content and linguistic attributes. In this work, we propose multiple improvements over the existing approaches that enable the encoder-decoder framework to cope with the text attribute transfer from non-parallel data. We perform experiments on the sentiment transfer task using two datasets. For both datasets, our proposed method outperforms a strong baseline in two of the three employed evaluation metrics.
In this work, we address the problem of modifying textual attributes of sentences. Given an input sentence and a set of attribute labels, we attempt to generate sentences that are compatible with the conditioning information. To ensure that the model generates content compatible sentences, we introduce a reconstruction loss which interpolates between auto-encoding and back-translation loss components. We propose an adversarial loss to enforce generated samples to be attribute compatible and realistic. Through quantitative, qualitative and human evaluations we demonstrate that our model is capable of generating fluent sentences that better reflect the conditioning information compared to prior methods. We further demonstrate that the model is capable of simultaneously controlling multiple attributes.
Text attribute transfer aims to automatically rewrite sentences such that they possess certain linguistic attributes, while simultaneously preserving their semantic content. This task remains challenging due to a lack of supervised parallel data. Existing approaches try to explicitly disentangle content and attribute information, but this is difficult and often results in poor content-preservation and ungrammaticality. In contrast, we propose a simpler approach, Iterative Matching and Translation (IMaT), which: (1) constructs a pseudo-parallel corpus by aligning a subset of semantically similar sentences from the source and the target corpora; (2) applies a standard sequence-to-sequence model to learn the attribute transfer; (3) iteratively improves the learned transfer function by refining imperfections in the alignment. In sentiment modification and formality transfer tasks, our method outperforms complex state-of-the-art systems by a large margin. As an auxiliary contribution, we produce a publicly-available test set with human-generated transfer references.
We present a deep generative model for unsupervised text style transfer that unifies previously proposed non-generative techniques. Our probabilistic approach models non-parallel data from two domains as a partially observed parallel corpus. By hypothesizing a parallel latent sequence that generates each observed sequence, our model learns to transform sequences from one domain to another in a completely unsupervised fashion. In contrast with traditional generative sequence models (e.g. the HMM), our model makes few assumptions about the data it generates: it uses a recurrent language model as a prior and an encoder-decoder as a transduction distribution. While computation of marginal data likelihood is intractable in this model class, we show that amortized variational inference admits a practical surrogate. Further, by drawing connections between our variational objective and other recent unsupervised style transfer and machine translation techniques, we show how our probabilistic view can unify some known non-generative objectives such as backtranslation and adversarial loss. Finally, we demonstrate the effectiveness of our method on a wide range of unsupervised style transfer tasks, including sentiment transfer, formality transfer, word decipherment, author imitation, and related language translation. Across all style transfer tasks, our approach yields substantial gains over state-of-the-art non-generative baselines, including the state-of-the-art unsupervised machine translation techniques that our approach generalizes. Further, we conduct experiments on a standard unsupervised machine translation task and find that our unified approach matches the current state-of-the-art.