Do you want to publish a course? Click here

Local and global integrability of Lie brackets

76   0   0.0 ( 0 )
 Added by Rui Loja Fernandes
 Publication date 2021
  fields
and research's language is English




Ask ChatGPT about the research

We survey recent results on the local and global integrability of a Lie algebroid, as well as the integrability of infinitesimal multiplicative geometric structures on it.



rate research

Read More

A VB-algebroid is a vector bundle object in the category of Lie algebroids. We attach to every VB-algebroid a differential graded Lie algebra and we show that it controls deformations of the VB-algebroid structure. Several examples and applications are discussed. This is the first in a series of papers devoted to deformations of vector bundles and related structures over differentiable stacks.
We describe a local model for any Singular Riemannian Foliation in a neighbourhood of a closed saturated submanifold of a regular stratum. Moreover we construct a Lie groupoid which controls the transverse geometry of the linear approximation of the Singular Riemannian Foliation around these submanifolds. We also discuss the closure of this Lie groupoid and its Lie algebroid.
We provide a complete solution to the problem of extending a local Lie groupoid to a global Lie groupoid. First, we show that the classical Malcevs theorem, which characterizes local Lie groups that can be extended to global Lie groups, also holds in the groupoid setting. Next, we describe a construction that can be used to obtain any local Lie groupoid with integrable algebroid. Last, our main result establishes a precise relationship between the integrability of a Lie algebroid and the failure in associativity of a local integration. We give a simplicial interpretation of this result showing that the monodromy groups of a Lie algebroid manifest themselves combinatorially in a local integration, as a lack of associativity.
We discuss a Moser type argument to show when a deformation of a Lie group homomorphism and of a Lie subgroup is trivial. For compact groups we obtain stability results.
In this paper we introduce, in the Riemannian setting, the notion of conformal Ricci soliton, which includes as particular cases Einstein manifolds, conformal Einstein manifolds and (generic and gradient) Ricci solitons. We provide here some necessary integrability conditions for the existence of these structures that also recover, in the corresponding contexts, those already known in the literature for conformally Einstein manifolds and for gradient Ricci solitons. A crucial tool in our analysis is the construction of some appropriate and highly nontrivial $(0,3)$-tensors related to the geometric structures, that in the special case of gradient Ricci solitons become the celebrated tensor $D$ recently introduced by Cao and Chen. A significant part of our investigation, which has independent interest, is the derivation of a number of commutation rules for covariant derivatives (of functions and tensors) and of transformation laws of some geometric objects under a conformal change of the underlying metric.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا