Do you want to publish a course? Click here

Providing a hybrid cryptography algorithm for lightweight authentication protocol in RFID with urban traffic usage case

67   0   0.0 ( 0 )
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Today, the Internet of Things (IoT) is one of the emerging technologies that enable the connection and transfer of information through communication networks. The main idea of the IoT is the widespread presence of objects such as mobile devices, sensors, and RFID. With the increase in traffic volume in urban areas, the existing intelligent urban traffic management system based on IoT can be vital. Therefore, this paper focused on security in urban traffic based on using RFID. In our scheme, RFID tags chose as the purpose of this article. We, in this paper, present a mutual authentication protocol that leads to privacy based on hybrid cryptography. Also, an authentication process with RFID tags is proposed that can be read at high speed. The protocol has attempted to reduce the complexity of computing. At the same time, the proposed method can withstand attacks such as spoofing of tag and reader, tag tracking, and replay attack.



rate research

Read More

Radio Frequency Identification (RFID) technology one of the most promising technologies in the field of ubiquitous computing. Indeed, RFID technology may well replace barcode technology. Although it offers many advantages over other identification systems, there are also associated security risks that are not easy to be addressed. When designing a real lightweight authentication protocol for low cost RFID tags, a number of challenges arise due to the extremely limited computational, storage and communication abilities of Low-cost RFID tags. This paper proposes a real mutual authentication protocol for low cost RFID tags. The proposed protocol prevents passive attacks as active attacks are discounted when designing a protocol to meet the requirements of low cost RFID tags. However the implementation of the protocol meets the limited abilities of low cost RFID tags.
Almost all existing RFID authentication schemes (tag/reader) are vulnerable to relay attacks, because of their inability to estimate the distance to the tag. These attacks are very serious since it can be mounted without the notice of neither the reader nor the tag and cannot be prevented by cryptographic protocols that operate at the application layer. Distance bounding protocols represent a promising way to thwart relay attacks, by measuring the round trip time of short authenticated messages. All the existing distance bounding protocols use random number generator and hash functions at the tag side which make them inapplicable at low cost RFID tags. This paper proposes a lightweight distance bound protocol for low cost RFID tags. The proposed protocol based on modified version of Gossamer mutual authentication protocol. The implementation of the proposed protocol meets the limited abilities of low-cost RFID tags.
Continuous Authentication (CA) has been proposed as a potential solution to counter complex cybersecurity attacks that exploit conventional static authentication mechanisms that authenticate users only at an ingress point. However, widely researched human user characteristics-based CA mechanisms cannot be extended to continuously authenticate Internet of Things (IoT) devices. The challenges are exacerbated with increased adoption of device-to-device (d2d) communication in critical infrastructures. Existing d2d authentication protocols proposed in the literature are either prone to subversion or are computationally infeasible to be deployed on constrained IoT devices. In view of these challenges, we propose a novel, lightweight, and secure CA protocol that leverages communication channel properties and a tunable mathematical function to generate dynamically changing session keys. Our preliminary informal protocol analysis suggests that the proposed protocol is resistant to known attack vectors and thus has strong potential for deployment in securing critical and resource-constrained d2d communication.
223 - M. Peev , M. Nolle , O. Maurhardt 2004
In this work we review the security vulnerability of Quantum Cryptography with respect to man-in-the-middle attacks and the standard authentication methods applied to counteract these attacks. We further propose a modified authentication algorithm which features higher efficiency with respect to consumption of mutual secret bits.
With the emergence of 5G, Internet of Things (IoT) has become a center of attraction for almost all industries due to its wide range of applications from various domains. The explosive growth of industrial control processes and the industrial IoT, imposes unprecedented vulnerability to cyber threats in critical infrastructure through the interconnected systems. This new security threats could be minimized by lightweight cryptography, a sub-branch of cryptography, especially derived for resource-constrained devices such as RFID tags, smart cards, wireless sensors, etc. More than four dozens of lightweight cryptography algorithms have been proposed, designed for specific application(s). These algorithms exhibit diverse hardware and software performances in different circumstances. This paper presents the performance comparison along with their reported cryptanalysis, mainly for lightweight block ciphers, and further shows new research directions to develop novel algorithms with right balance of cost, performance and security characteristics.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا