Do you want to publish a course? Click here

Time reversal of diffusion processes under a finite entropy condition

66   0   0.0 ( 0 )
 Publication date 2021
  fields
and research's language is English




Ask ChatGPT about the research

Motivated by entropic optimal transport, time reversal of diffusion processes is revisited. An integration by parts formula is derived for the carre du champ of a Markov process in an abstract space. It leads to a time reversal formula for a wide class of diffusion processes in $ mathbb{R}^n$ possibly with singular drifts, extending the already known results in this domain. The proof of the integration by parts formula relies on stochastic derivatives. Then, this formula is applied to compute the semimartingale characteristics of the time-reversed $P^*$ of a diffusion measure $P$ provided that the relative entropy of $P$ with respect to another diffusion measure $R$ is finite, and the semimartingale characteristics of the time-reversed $R^*$ are known (for instance when the reference path measure $R$ is reversible). As an illustration of the robustness of this method, the integration by parts formula is also employed to derive a time-reversal formula for a random walk on a graph.



rate research

Read More

Electric signals have been recently recorded at the Earths surface with amplitudes appreciably larger than those hitherto reported. Their entropy in natural time is smaller than that, $S_u$, of a ``uniform distribution. The same holds for their entropy upon time-reversal. This behavior, as supported by numerical simulations in fBm time series and in an on-off intermittency model, stems from infinitely ranged long range temporal correlations and hence these signals are probably Seismic Electric Signals (critical dynamics). The entropy fluctuations are found to increase upon approaching bursting, which reminds the behavior identifying sudden cardiac death individuals when analysing their electrocardiograms.
For a finite state Markov process and a finite collection ${ Gamma_k, k in K }$ of subsets of its state space, let $tau_k$ be the first time the process visits the set $Gamma_k$. We derive explicit/recursive formulas for the joint density and tail probabilities of the stopping times ${ tau_k, k in K}$. The formulas are natural generalizations of those associated with the jump times of a simple Poisson process. We give a numerical example and indicate the relevance of our results to credit risk modeling.
A basic problem in operator theory is to estimate how a small perturbation effects the eigenspaces of a self-adjoint compact operator. In this paper, we prove upper bounds for the subspace distance, taylored for structured random perturbations. As a main example, we consider the empirical covariance operator, and show that a sharp bound can be achieved under a relative gap condition. The proof is based on a novel contraction phenomenon, contrasting previous spectral perturbation approaches.
In this paper, we consider the optimal stopping problem on semi-Markov processes (SMPs) with finite horizon, and aim to establish the existence and computation of optimal stopping times. To achieve the goal, we first develop the main results of finite horizon semi-Markov decision processes (SMDPs) to the case with additional terminal costs, introduce an explicit construction of SMDPs, and prove the equivalence between the optimal stopping problems on SMPs and SMDPs. Then, using the equivalence and the results on SMDPs developed here, we not only show the existence of optimal stopping time of SMPs, but also provide an algorithm for computing optimal stopping time on SMPs. Moreover, we show that the optimal and -optimal stopping time can be characterized by the hitting time of some special sets, respectively.
Transfer entropy (TE) was introduced by Schreiber in 2000 as a measurement of the predictive capacity of one stochastic process with respect to another. Originally stated for discrete time processes, we expand the theory in line with recent work of Spinney, Prokopenko, and Lizier to define TE for stochastic processes indexed over a compact interval taking values in a Polish state space. We provide a definition for continuous time TE using the Radon-Nikodym Theorem, random measures, and projective limits of probability spaces. As our main result, we provide necessary and sufficient conditions to obtain this definition as a limit of discrete time TE, as well as illustrate its application via an example involving Poisson point processes. As a derivative of continuous time TE, we also define the transfer entropy rate between two processes and show that (under mild assumptions) their stationarity implies a constant rate. We also investigate TE between homogeneous Markov jump processes and discuss some open problems and possible future directions.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا