No Arabic abstract
A basic problem in operator theory is to estimate how a small perturbation effects the eigenspaces of a self-adjoint compact operator. In this paper, we prove upper bounds for the subspace distance, taylored for structured random perturbations. As a main example, we consider the empirical covariance operator, and show that a sharp bound can be achieved under a relative gap condition. The proof is based on a novel contraction phenomenon, contrasting previous spectral perturbation approaches.
The goal of this paper is to establish relative perturbation bounds, tailored for empirical covariance operators. Our main results are expansions for empirical eigenvalues and spectral projectors, leading to concentration inequalities and limit theorems. Our framework is very general, allowing for a huge variety of stationary, ergodic sequences, requiring only $p > 4$ moments. One of the key ingredients is a specific separation measure for population eigenvalues, which we call the relative rank. Developing a new algebraic approach for relative perturbations, we show that this relative rank gives rise to necessary and sufficient conditions for our concentration inequalities and limit theorems.
Consider the projection of an $n$-dimensional random vector onto a random $k_n$-dimensional basis, $k_n leq n$, drawn uniformly from the Haar measure on the Stiefel manifold of orthonormal $k_n$-frames in $mathbb{R}^n$, in three different asymptotic regimes as $n rightarrow infty$: constant ($k_n=k$), sublinear ($k_n rightarrow infty$ but $k_n/n rightarrow 0$) and linear $k_n/n rightarrow lambda$ with $0 < lambda le 1$). When the sequence of random vectors satisfies a certain asymptotic thin shell condition, we establish annealed large deviation principles (LDPs) for the corresponding sequence of random projections in the constant regime, and for the sequence of empirical measures of the coordinates of the random projections in the sublinear and linear regimes. We also establish LDPs for certain scaled $ell_q$ norms of the random projections in these different regimes. Moreover, we verify our assumptions for various sequences of random vectors of interest, including those distributed according to Gibbs measures with superquadratic interaction potential, or the uniform measure on suitably scaled $ell_p^n$ balls, for $p in [1,infty)$, and generalized Orlicz balls defined via a superquadratic function. Our results complement the central limit theorem for convex sets and related results which are known to hold under a thin shell condition. These results also substantially extend existing large deviation results for random projections, which are first, restricted to the setting of measures on $ell_p^n$ balls, and secondly, limited to univariate LDPs (i.e., in $mathbb{R}$) involving either the norm of a $k_n$-dimensional projection or the projection of $X^{(n)}$ onto a random one-dimensional subspace. Random projections of high-dimensional random vectors are of interest in a range of fields including asymptotic convex geometry and high-dimensional statistics.
We prove that Ising models on the hypercube with general quadratic interactions satisfy a Poincar{e} inequality with respect to the natural Dirichlet form corresponding to Glauber dynamics, as soon as the operator norm of the interaction matrix is smaller than $1$. The inequality implies a control on the mixing time of the Glauber dynamics. Our techniques rely on a localization procedure which establishes a structural result, stating that Ising measures may be decomposed into a mixture of measures with quadratic potentials of rank one, and provides a framework for proving concentration bounds for high temperature Ising models.
Motivated by entropic optimal transport, time reversal of diffusion processes is revisited. An integration by parts formula is derived for the carre du champ of a Markov process in an abstract space. It leads to a time reversal formula for a wide class of diffusion processes in $ mathbb{R}^n$ possibly with singular drifts, extending the already known results in this domain. The proof of the integration by parts formula relies on stochastic derivatives. Then, this formula is applied to compute the semimartingale characteristics of the time-reversed $P^*$ of a diffusion measure $P$ provided that the relative entropy of $P$ with respect to another diffusion measure $R$ is finite, and the semimartingale characteristics of the time-reversed $R^*$ are known (for instance when the reference path measure $R$ is reversible). As an illustration of the robustness of this method, the integration by parts formula is also employed to derive a time-reversal formula for a random walk on a graph.
We establish the existence of smooth densities for solutions to a broad class of path-dependent SDEs under a Hormander-type condition. The classical scheme based on the reduced Malliavin matrix turns out to be unavailable in the path-dependent context. We approach the problem by lifting the given $n$-dimensional path-dependent SDE into a suitable $L_p$-type Banach space in such a way that the lifted Banach-space-valued equation becomes a state-dependent reformulation of the original SDE. We then formulate Hormanders bracket condition in $mathbb R^n$ for non-anticipative SDE coefficients defining the Lie brackets in terms of vertical derivatives in the sense of the functional It^o calculus. Our pathway to the main result engages an interplay between the analysis of SDEs in Banach spaces, Malliavin calculus, and rough path techniques.