No Arabic abstract
Using spin-resolved and angle-resolved photoemission spectroscopy and first-principles calculations, we have identified bulk band inversion and spin polarized surface state evolved from a weak topological insulator (TI) phase in van der Waals materials Nb3XTe6 (X = Si, Ge). The fingerprints of weak TI homologically emerge with hourglass fermions, as multi nodal chains composed by the same pair of valence and conduction bands gapped by spin orbit coupling. The novel topological state, with a pair of valence and conduction bands encoding both weak TI and hourglass semimetal nature, is essential and guaranteed by nonsymmorphic symmetry. It is distinct from TIs studied previously based on band
By employing angle-resolved photoemission spectroscopy combined with first-principles calculations, we performed a systematic investigation on the electronic structure of LaBi, which exhibits extremely large magnetoresistance (XMR), and is theoretically predicted to possess band anticrossing with nontrivial topological properties. Here, the observations of the Fermi-surface topology and band dispersions are similar to previous studies on LaSb [Phys. Rev. Lett. 117, 127204 (2016)], a topologically trivial XMR semimetal, except the existence of a band inversion along the $Gamma$-$X$ direction, with one massless and one gapped Dirac-like surface state at the $X$ and $Gamma$ points, respectively. The odd number of massless Dirac cones suggests that LaBi is analogous to the time-reversal $Z_2$ nontrivial topological insulator. These findings open up a new series for exploring novel topological states and investigating their evolution from the perspective of topological phase transition within the family of rare-earth monopnictides.
We report the optical conductivity in high-quality crystals of the chiral topological semimetal CoSi, which hosts exotic quasiparticles known as multifold fermions. We find that the optical response is separated into several distinct regions as a function of frequency, each dominated by different types of quasiparticles. The low-frequency intraband response is captured by a narrow Drude peak from a high-mobility electron pocket of double Weyl quasi-particles, and the temperature dependence of the spectral weight is consistent with its Fermi velocity. By subtracting the low-frequency sharp Drude and phonon peaks at low temperatures, we reveal two intermediate quasi-linear inter-band contributions separated by a kink at 0.2 eV. Using Wannier tight-binding models based on first-principle calculations, we link the optical conductivity above and below 0.2 eV to interband transitions near the double Weyl fermion and a threefold fermion, respectively. We analyze and determine the chemical potential relative to the energy of the threefold fermion, revealing the importance of transitions between a linearly dispersing band and a flat band. More strikingly, below 0.1 eV our data are best explained if spin-orbit coupling is included, suggesting that at these energies the optical response is governed by transitions between a previously unobserved four-fold spin-3/2 node and a Weyl node. Our comprehensive combined experimental and theoretical study provides a way to resolve different types of multifold fermions in CoSi at different energy. More broadly our results provide the necessary basis to interpret the burgeoning set of optical and transport experiments in chiral topological semimetals.
Topological insulators (TI) are a new class of quantum materials with insulating bulk enclosed by topologically protected metallic boundaries. The surface states of three-dimensional TIs have spin helical Dirac structure, and are robust against time reversal invariant perturbations. This extraordinary property is notably exemplified by the absence of backscattering by nonmagnetic impurities and the weak antilocalization (WAL) of Dirac fermions. Breaking the time reversal symmetry (TRS) by magnetic element doping is predicted to create a variety of exotic topological magnetoelectric effects. Here we report transport studies on magnetically doped TI Cr-Bi2Se3. With increasing Cr concentration, the low temperature electrical conduction exhibits a characteristic crossover from WAL to weak localization (WL). In the heavily doped regime where WL dominates at the ground state, WAL reenters as temperature rises, but can be driven back to WL by strong magnetic field. These complex phenomena can be explained by a unified picture involving the evolution of Berry phase with the energy gap opened by magnetic impurities. This work demonstrates an effective way to manipulate the topological transport properties of the TI surface states by TRS-breaking perturbations.
A topological insulator (TI) interfaced with a magnetic insulator (MI) may host an anomalous Hall effect (AHE), a quantum AHE, and a topological Hall effect (THE). Recent studies, however, suggest that coexisting magnetic phases in TI/MI heterostructures may result in an AHE-associated response that resembles a THE but in fact is not. This article reports a genuine THE in a TI/MI structure that has only one magnetic phase. The structure shows a THE in the temperature range of T=2-3 K and an AHE at T=80-300 K. Over T=3-80 K, the two effects coexist but show opposite temperature dependencies. Control measurements, calculations, and simulations together suggest that the observed THE originates from skyrmions, rather than the coexistence of two AHE responses. The skyrmions are formed due to an interfacial DMI interaction. The DMI strength estimated is substantially higher than that in heavy metal-based systems.
Dirac semimetal (DSM) hosts four-fold degenerate isolated band-crossing points with linear dispersion, around which the quasiparticles resemble the relativistic Dirac Fermions. It can be described by a 4 * 4 massless Dirac Hamiltonian which can be decomposed into a pair of Weyl points or gaped into an insulator. Thus, crystal symmetry is critical to guarantee the stable existence. On the contrary, by breaking crystal symmetry, a DSM may transform into a Weyl semimetal (WSM) or a topological insulator (TI). Here, by taking hexagonal LiAuSe as an example, we find that it is a starfruit shaped multiple nodal chain semimetal in the absence of spin-orbit coupling(SOC). In the presence of SOC, it is an ideal DSM naturally with the Dirac points locating at Fermi level exactly, and it would transform into WSM phase by introducing external Zeeman field or by magnetic doping with rare-earth atom Sm. It could also transform into TI state by breaking rotational symmetry. Our studies show that DSM is a critical point for topological phase transition, and the conclusion can apply to most of the DSM materials, not limited to the hexagonal material LiAuSe.