Do you want to publish a course? Click here

An Alignment-Agnostic Model for Chinese Text Error Correction

69   0   0.0 ( 0 )
 Added by Weishun Song
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

This paper investigates how to correct Chinese text errors with types of mistaken, missing and redundant characters, which is common for Chinese native speakers. Most existing models based on detect-correct framework can correct mistaken characters errors, but they cannot deal with missing or redundant characters. The reason is that lengths of sentences before and after correction are not the same, leading to the inconsistence between model inputs and outputs. Although the Seq2Seq-based or sequence tagging methods provide solutions to the problem and achieved relatively good results on English context, but they do not perform well in Chinese context according to our experimental results. In our work, we propose a novel detect-correct framework which is alignment-agnostic, meaning that it can handle both text aligned and non-aligned occasions, and it can also serve as a cold start model when there are no annotated data provided. Experimental results on three datasets demonstrate that our method is effective and achieves the best performance among existing published models.



rate research

Read More

97 - Piji Li , Shuming Shi 2021
We investigate the problem of Chinese Grammatical Error Correction (CGEC) and present a new framework named Tail-to-Tail (textbf{TtT}) non-autoregressive sequence prediction to address the deep issues hidden in CGEC. Considering that most tokens are correct and can be conveyed directly from source to target, and the error positions can be estimated and corrected based on the bidirectional context information, thus we employ a BERT-initialized Transformer Encoder as the backbone model to conduct information modeling and conveying. Considering that only relying on the same position substitution cannot handle the variable-length correction cases, various operations such substitution, deletion, insertion, and local paraphrasing are required jointly. Therefore, a Conditional Random Fields (CRF) layer is stacked on the up tail to conduct non-autoregressive sequence prediction by modeling the token dependencies. Since most tokens are correct and easily to be predicted/conveyed to the target, then the models may suffer from a severe class imbalance issue. To alleviate this problem, focal loss penalty strategies are integrated into the loss functions. Moreover, besides the typical fix-length error correction datasets, we also construct a variable-length corpus to conduct experiments. Experimental results on standard datasets, especially on the variable-length datasets, demonstrate the effectiveness of TtT in terms of sentence-level Accuracy, Precision, Recall, and F1-Measure on tasks of error Detection and Correction.
129 - Meng Cao , Yue Dong , Jiapeng Wu 2020
Neural abstractive summarization systems have achieved promising progress, thanks to the availability of large-scale datasets and models pre-trained with self-supervised methods. However, ensuring the factual consistency of the generated summaries for abstractive summarization systems is a challenge. We propose a post-editing corrector module to address this issue by identifying and correcting factual errors in generated summaries. The neural corrector model is pre-trained on artificial examples that are created by applying a series of heuristic transformations on reference summaries. These transformations are inspired by an error analysis of state-of-the-art summarization model outputs. Experimental results show that our model is able to correct factual errors in summaries generated by other neural summarization models and outperforms previous models on factual consistency evaluation on the CNN/DailyMail dataset. We also find that transferring from artificial error correction to downstream settings is still very challenging.
Error correction techniques have been used to refine the output sentences from automatic speech recognition (ASR) models and achieve a lower word error rate (WER) than original ASR outputs. Previous works usually use a sequence-to-sequence model to correct an ASR output sentence autoregressively, which causes large latency and cannot be deployed in online ASR services. A straightforward solution to reduce latency, inspired by non-autoregressive (NAR) neural machine translation, is to use an NAR sequence generation model for ASR error correction, which, however, comes at the cost of significantly increased ASR error rate. In this paper, observing distinctive error patterns and correction operations (i.e., insertion, deletion, and substitution) in ASR, we propose FastCorrect, a novel NAR error correction model based on edit alignment. In training, FastCorrect aligns each source token from an ASR output sentence to the target tokens from the corresponding ground-truth sentence based on the edit distance between the source and target sentences, and extracts the number of target tokens corresponding to each source token during edition/correction, which is then used to train a length predictor and to adjust the source tokens to match the length of the target sentence for parallel generation. In inference, the token number predicted by the length predictor is used to adjust the source tokens for target sequence generation. Experiments on the public AISHELL-1 dataset and an internal industrial-scale ASR dataset show the effectiveness of FastCorrect for ASR error correction: 1) it speeds up the inference by 6-9 times and maintains the accuracy (8-14% WER reduction) compared with the autoregressive correction model; and 2) it outperforms the popular NAR models adopted in neural machine translation and text edition by a large margin.
With the development of information technology, there is an explosive growth in the number of online comment concerning news, blogs and so on. The massive comments are overloaded, and often contain some misleading and unwelcome information. Therefore, it is necessary to identify high-quality comments and filter out low-quality comments. In this work, we introduce a novel task: high-quality comment identification (HQCI), which aims to automatically assess the quality of online comments. First, we construct a news comment corpus, which consists of news, comments, and the corresponding quality label. Second, we analyze the dataset, and find the quality of comments can be measured in three aspects: informativeness, consistency, and novelty. Finally, we propose a novel multi-target text matching model, which can measure three aspects by referring to the news and surrounding comments. Experimental results show that our method can outperform various baselines by a large margin on the news dataset.
233 - Tao Ge , Furu Wei , Ming Zhou 2018
Neural sequence-to-sequence (seq2seq) approaches have proven to be successful in grammatical error correction (GEC). Based on the seq2seq framework, we propose a novel fluency boost learning and inference mechanism. Fluency boosting learning generates diverse error-corrected sentence pairs during training, enabling the error correction model to learn how to improve a sentences fluency from more instances, while fluency boosting inference allows the model to correct a sentence incrementally with multiple inference steps. Combining fluency boost learning and inference with convolutional seq2seq models, our approach achieves the state-of-the-art performance: 75.72 (F_{0.5}) on CoNLL-2014 10 annotation dataset and 62.42 (GLEU) on JFLEG test set respectively, becoming the first GEC system that reaches human-level performance (72.58 for CoNLL and 62.37 for JFLEG) on both of the benchmarks.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا