Do you want to publish a course? Click here

Adaptive Intermediate Representations for Video Understanding

65   0   0.0 ( 0 )
 Added by Juhana Kangaspunta
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

A common strategy to video understanding is to incorporate spatial and motion information by fusing features derived from RGB frames and optical flow. In this work, we introduce a new way to leverage semantic segmentation as an intermediate representation for video understanding and use it in a way that requires no additional labeling. Second, we propose a general framework which learns the intermediate representations (optical flow and semantic segmentation) jointly with the final video understanding task and allows the adaptation of the representations to the end goal. Despite the use of intermediate representations within the network, during inference, no additional data beyond RGB sequences is needed, enabling efficient recognition with a single network. Finally, we present a way to find the optimal learning configuration by searching the best loss weighting via evolution. We obtain more powerful visual representations for videos which lead to performance gains over the state-of-the-art.



rate research

Read More

93 - Miao Liu , Xin Chen , Yun Zhang 2019
We address the challenging problem of learning motion representations using deep models for video recognition. To this end, we make use of attention modules that learn to highlight regions in the video and aggregate features for recognition. Specifically, we propose to leverage output attention maps as a vehicle to transfer the learned representation from a motion (flow) network to an RGB network. We systematically study the design of attention modules, and develop a novel method for attention distillation. Our method is evaluated on major action benchmarks, and consistently improves the performance of the baseline RGB network by a significant margin. Moreover, we demonstrate that our attention maps can leverage motion cues in learning to identify the location of actions in video frames. We believe our method provides a step towards learning motion-aware representations in deep models. Our project page is available at https://aptx4869lm.github.io/AttentionDistillation/
In this paper, we explore the spatial redundancy in video recognition with the aim to improve the computational efficiency. It is observed that the most informative region in each frame of a video is usually a small image patch, which shifts smoothly across frames. Therefore, we model the patch localization problem as a sequential decision task, and propose a reinforcement learning based approach for efficient spatially adaptive video recognition (AdaFocus). In specific, a light-weighted ConvNet is first adopted to quickly process the full video sequence, whose features are used by a recurrent policy network to localize the most task-relevant regions. Then the selected patches are inferred by a high-capacity network for the final prediction. During offline inference, once the informative patch sequence has been generated, the bulk of computation can be done in parallel, and is efficient on modern GPU devices. In addition, we demonstrate that the proposed method can be easily extended by further considering the temporal redundancy, e.g., dynamically skipping less valuable frames. Extensive experiments on five benchmark datasets, i.e., ActivityNet, FCVID, Mini-Kinetics, Something-Something V1&V2, demonstrate that our method is significantly more efficient than the competitive baselines. Code is available at https://github.com/blackfeather-wang/AdaFocus.
We propose a new framework for understanding and representing related salient events in a video using visual semantic role labeling. We represent videos as a set of related events, wherein each event consists of a verb and multiple entities that fulfill various roles relevant to that event. To study the challenging task of semantic role labeling in videos or VidSRL, we introduce the VidSitu benchmark, a large-scale video understanding data source with $29K$ $10$-second movie clips richly annotated with a verb and semantic-roles every $2$ seconds. Entities are co-referenced across events within a movie clip and events are connected to each other via event-event relations. Clips in VidSitu are drawn from a large collection of movies (${sim}3K$) and have been chosen to be both complex (${sim}4.2$ unique verbs within a video) as well as diverse (${sim}200$ verbs have more than $100$ annotations each). We provide a comprehensive analysis of the dataset in comparison to other publicly available video understanding benchmarks, several illustrative baselines and evaluate a range of standard video recognition models. Our code and dataset is available at vidsitu.org.
Perceiving the world in terms of objects and tracking them through time is a crucial prerequisite for reasoning and scene understanding. Recently, several methods have been proposed for unsupervised learning of object-centric representations. However, since these models were evaluated on different downstream tasks, it remains unclear how they compare in terms of basic perceptual abilities such as detection, figure-ground segmentation and tracking of objects. To close this gap, we design a benchmark with four data sets of varying complexity and seven additional test sets featuring challenging tracking scenarios relevant for natural videos. Using this benchmark, we compare the perceptual abilities of four object-centric approaches: ViMON, a video-extension of MONet, based on recurrent spatial attention, OP3, which exploits clustering via spatial mixture models, as well as TBA and SCALOR, which use explicit factorization via spatial transformers. Our results suggest that the architectures with unconstrained latent representations learn more powerful representations in terms of object detection, segmentation and tracking than the spatial transformer based architectures. We also observe that none of the methods are able to gracefully handle the most challenging tracking scenarios despite their synthetic nature, suggesting that our benchmark may provide fruitful guidance towards learning more robust object-centric video representations.
Compact keyframe-based video summaries are a popular way of generating viewership on video sharing platforms. Yet, creating relevant and compelling summaries for arbitrarily long videos with a small number of keyframes is a challenging task. We propose a comprehensive keyframe-based summarization framework combining deep convolutional neural networks and restricted Boltzmann machines. An original co-regularization scheme is used to discover meaningful subject-scene associations. The resulting multimodal representations are then used to select highly-relevant keyframes. A comprehensive user study is conducted comparing our proposed method to a variety of schemes, including the summarization currently in use by one of the most popular video sharing websites. The results show that our method consistently outperforms the baseline schemes for any given amount of keyframes both in terms of attractiveness and informativeness. The lead is even more significant for smaller summaries.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا