No Arabic abstract
In this paper, we explore the spatial redundancy in video recognition with the aim to improve the computational efficiency. It is observed that the most informative region in each frame of a video is usually a small image patch, which shifts smoothly across frames. Therefore, we model the patch localization problem as a sequential decision task, and propose a reinforcement learning based approach for efficient spatially adaptive video recognition (AdaFocus). In specific, a light-weighted ConvNet is first adopted to quickly process the full video sequence, whose features are used by a recurrent policy network to localize the most task-relevant regions. Then the selected patches are inferred by a high-capacity network for the final prediction. During offline inference, once the informative patch sequence has been generated, the bulk of computation can be done in parallel, and is efficient on modern GPU devices. In addition, we demonstrate that the proposed method can be easily extended by further considering the temporal redundancy, e.g., dynamically skipping less valuable frames. Extensive experiments on five benchmark datasets, i.e., ActivityNet, FCVID, Mini-Kinetics, Something-Something V1&V2, demonstrate that our method is significantly more efficient than the competitive baselines. Code is available at https://github.com/blackfeather-wang/AdaFocus.
A recent work from Bello shows that training and scaling strategies may be more significant than model architectures for visual recognition. This short note studies effective training and scaling strategies for video recognition models. We propose a simple scaling strategy for 3D ResNets, in combination with improved training strategies and minor architectural changes. The resulting models, termed 3D ResNet-RS, attain competitive performance of 81.0 on Kinetics-400 and 83.8 on Kinetics-600 without pre-training. When pre-trained on a large Web Video Text dataset, our best model achieves 83.5 and 84.3 on Kinetics-400 and Kinetics-600. The proposed scaling rule is further evaluated in a self-supervised setup using contrastive learning, demonstrating improved performance. Code is available at: https://github.com/tensorflow/models/tree/master/official.
Multi-modal learning, which focuses on utilizing various modalities to improve the performance of a model, is widely used in video recognition. While traditional multi-modal learning offers excellent recognition results, its computational expense limits its impact for many real-world applications. In this paper, we propose an adaptive multi-modal learning framework, called AdaMML, that selects on-the-fly the optimal modalities for each segment conditioned on the input for efficient video recognition. Specifically, given a video segment, a multi-modal policy network is used to decide what modalities should be used for processing by the recognition model, with the goal of improving both accuracy and efficiency. We efficiently train the policy network jointly with the recognition model using standard back-propagation. Extensive experiments on four challenging diverse datasets demonstrate that our proposed adaptive approach yields 35%-55% reduction in computation when compared to the traditional baseline that simply uses all the modalities irrespective of the input, while also achieving consistent improvements in accuracy over the state-of-the-art methods.
Action recognition is a crucial task for video understanding. In this paper, we present AutoVideo, a Python system for automated video action recognition. It currently supports seven action recognition algorithms and various pre-processing modules. Unlike the existing libraries that only provide model zoos, AutoVideo is built with the standard pipeline language. The basic building block is primitive, which wraps a pre-processing module or an algorithm with some hyperparameters. AutoVideo is highly modular and extendable. It can be easily combined with AutoML searchers. The pipeline language is quite general so that we can easily enrich AutoVideo with algorithms for various other video-related tasks in the future. AutoVideo is released under MIT license at https://github.com/datamllab/autovideo
We present Mobile Video Networks (MoViNets), a family of computation and memory efficient video networks that can operate on streaming video for online inference. 3D convolutional neural networks (CNNs) are accurate at video recognition but require large computation and memory budgets and do not support online inference, making them difficult to work on mobile devices. We propose a three-step approach to improve computational efficiency while substantially reducing the peak memory usage of 3D CNNs. First, we design a video network search space and employ neural architecture search to generate efficient and diverse 3D CNN architectures. Second, we introduce the Stream Buffer technique that decouples memory from video clip duration, allowing 3D CNNs to embed arbitrary-length streaming video sequences for both training and inference with a small constant memory footprint. Third, we propose a simple ensembling technique to improve accuracy further without sacrificing efficiency. These three progressive techniques allow MoViNets to achieve state-of-the-art accuracy and efficiency on the Kinetics, Moments in Time, and Charades video action recognition datasets. For instance, MoViNet-A5-Stream achieves the same accuracy as X3D-XL on Kinetics 600 while requiring 80% fewer FLOPs and 65% less memory. Code will be made available at https://github.com/tensorflow/models/tree/master/official/vision.
Transferring existing image-based detectors to the video is non-trivial since the quality of frames is always deteriorated by part occlusion, rare pose, and motion blur. Previous approaches exploit to propagate and aggregate features across video frames by using optical flow-warping. However, directly applying image-level optical flow onto the high-level features might not establish accurate spatial correspondences. Therefore, a novel module called Learnable Spatio-Temporal Sampling (LSTS) has been proposed to learn semantic-level correspondences among adjacent frame features accurately. The sampled locations are first randomly initialized, then updated iteratively to find better spatial correspondences guided by detection supervision progressively. Besides, Sparsely Recursive Feature Updating (SRFU) module and Dense Feature Aggregation (DFA) module are also introduced to model temporal relations and enhance per-frame features, respectively. Without bells and whistles, the proposed method achieves state-of-the-art performance on the ImageNet VID dataset with less computational complexity and real-time speed. Code will be made available at https://github.com/jiangzhengkai/LSTS.