No Arabic abstract
In the current era of Noisy Intermediate-Scale Quantum (NISQ) technology, the practical use of quantum computers remains inhibited by our inability to aptly decouple qubits from their environment to mitigate computational errors. In this work, we introduce an approach by which knowledge of a qubits initial quantum state and the standard parameters describing its decoherence can be leveraged to mitigate the noise present during the execution of a single-qubit gate. We benchmark our protocol using cloud-based access to IBM quantum processors. On ibmq_rome, we demonstrate a reduction of the single-qubit error rate by $38%$, from $1.6 times 10 ^{-3}$ to $1.0 times 10 ^{-3}$, provided the initial state of the input qubit is known. On ibmq_bogota, we prove that our protocol will never decrease gate fidelity, provided the systems $T_1$ and $T_2$ times have not drifted above $100$ times their assumed values. The protocol can be used to reduce quantum state preparation errors, as well as to improve the fidelity of quantum circuits for which some knowledge of the qubits intermediate states can be inferred. This work presents a pathway to using information about noise levels and quantum state distributions to significantly reduce error rates associated with quantum gates via optimized decomposition into native gates.
Coherent operations constitutive for the implementation of single and multi-qubit quantum gates with trapped ions are demonstrated that are robust against variations in experimental parameters and intrinsically indeterministic system parameters. In particular, pulses developed using optimal control theory are demonstrated for the first time with trapped ions. Their performance as a function of error parameters is systematically investigated and compared to composite pulses.
To solve classically hard problems, quantum computers need to be resilient to the influence of noise and decoherence. In such a fault-tolerant quantum computer, noise-induced errors must be detected and corrected in real-time to prevent them from propagating between components. This requirement is especially pertinent while applying quantum gates, when the interaction between components can cause errors to quickly spread throughout the system. However, the large overhead involved in most fault-tolerant architectures makes implementing these systems a daunting task, which motivates the search for hardware-efficient alternatives. Here, we present a gate enacted by a multilevel ancilla transmon on a cavity-encoded logical qubit that is fault-tolerant with respect to decoherence in both the ancilla and the encoded qubit. We maintain the purity of the encoded qubit in the presence of ancilla errors by detecting those errors in real-time, and applying the appropriate corrections. We show a reduction of the logical gate error by a factor of two in the presence of naturally occurring decoherence, and demonstrate resilience against ancilla bit-flips and phase-flips by observing a sixfold suppression of the gate error with increased energy relaxation, and a fourfold suppression with increased dephasing noise. The results demonstrate that bosonic logical qubits can be controlled by error-prone ancilla qubits without inheriting the ancillas inferior performance. As such, error-corrected ancilla-enabled gates are an important step towards fully fault-tolerant processing of bosonic qubits.
We demonstrate a simple pulse shaping technique designed to improve the fidelity of spin-dependent force operations commonly used to implement entangling gates in trapped-ion systems. This extension of the M{o}lmer-S{o}rensen gate can theoretically suppress the effects of certain frequency and timing errors to any desired order and is demonstrated through Walsh modulation of a two-qubit entangling gate on trapped atomic ions. The technique is applicable to any system of qubits coupled through collective harmonic oscillator modes.
Realizing an arbitrary single-qubit gate is a precursor for many quantum computational tasks, including the conventional approach to universal quantum computing. For superconducting qubits, single-qubit gates are usually realized by microwave pulses along drive or flux lines. These pulses are calibrated to realize a particular single-qubit gate. However, it is clearly impractical to calibrate a pulse for every possible single-qubit gate in $SU(2)$. On the other hand, compiling arbitrary gates using a finite universal gate set will lead to unacceptably low fidelities. Here, we provide a compilation scheme for arbitrary single-qubit gates for which the three real parameters of the gate directly correspond to the phase shifts of microwave pulses, which can be made extremely accurate experimentally, that is also compatible with any two-qubit gate. Furthermore, we only require the calibration of the $X_pi$ and $X_{frac pi 2}$ pulses, gates that are already necessary for tasks such as Clifford-based randomized benchmarking as well as measuring the $T_1$ and $T_2$ decoherence parameters.
We experimentally demonstrate the underlying physical mechanism of the recently proposed protocol for superreplication of quantum phase gates [W. Dur, P. Sekatski, and M. Skotiniotis, Phys. Rev. Lett. 114, 120503 (2015)], which allows to produce up to $N^2$ high-fidelity replicas from N input copies in the limit of large N. Our implementation of 1->2 replication of the single-qubit phase gates is based on linear optics and qubits encoded into states of single photons. We employ the quantum Toffoli gate to imprint information about the structure of an input two-qubit state onto an auxiliary qubit, apply the replicated operation to the auxiliary qubit, and then disentangle the auxiliary qubit from the other qubits by a suitable quantum measurement. We characterize the replication protocol by full quantum process tomography and observe good agreement of the experimental results with theory.