Do you want to publish a course? Click here

IGA : An Intent-Guided Authoring Assistant

61   0   0.0 ( 0 )
 Added by Simeng Sun
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

While large-scale pretrained language models have significantly improved writing assistance functionalities such as autocomplete, more complex and controllable writing assistants have yet to be explored. We leverage advances in language modeling to build an interactive writing assistant that generates and rephrases text according to fine-grained author specifications. Users provide input to our Intent-Guided Assistant (IGA) in the form of text interspersed with tags that correspond to specific rhetorical directives (e.g., adding description or contrast, or rephrasing a particular sentence). We fine-tune a language model on a dataset heuristically-labeled with author intent, which allows IGA to fill in these tags with generated text that users can subsequently edit to their liking. A series of automatic and crowdsourced evaluations confirm the quality of IGAs generated outputs, while a small-scale user study demonstrates author preference for IGA over baseline methods in a creative writing task. We release our dataset, code, and demo to spur further research into AI-assisted writing.



rate research

Read More

106 - Qingyi Si , Yuanxin Liu , Peng Fu 2020
Zero-shot intent detection (ZSID) aims to deal with the continuously emerging intents without annotated training data. However, existing ZSID systems suffer from two limitations: 1) They are not good at modeling the relationship between seen and unseen intents. 2) They cannot effectively recognize unseen intents under the generalized intent detection (GZSID) setting. A critical problem behind these limitations is that the representations of unseen intents cannot be learned in the training stage. To address this problem, we propose a novel framework that utilizes unseen class labels to learn Class-Transductive Intent Representations (CTIR). Specifically, we allow the model to predict unseen intents during training, with the corresponding label names serving as input utterances. On this basis, we introduce a multi-task learning objective, which encourages the model to learn the distinctions among intents, and a similarity scorer, which estimates the connections among intents more accurately. CTIR is easy to implement and can be integrated with existing methods. Experiments on two real-world datasets show that CTIR brings considerable improvement to the baseline systems.
Modern task-oriented dialog systems need to reliably understand users intents. Intent detection is most challenging when moving to new domains or new languages, since there is little annotated data. To address this challenge, we present a suite of pretrained intent detection models. Our models are able to predict a broad range of intended goals from many actions because they are trained on wikiHow, a comprehensive instructional website. Our models achieve state-of-the-art results on the Snips dataset, the Schema-Guided Dialogue dataset, and all 3 languages of the Facebook multilingual dialog datasets. Our models also demonstrate strong zero- and few-shot performance, reaching over 75% accuracy using only 100 training examples in all datasets.
With the rapid advance of sophisticated control algorithms, the capabilities of drones to stabilise, fly and manoeuvre autonomously have dramatically improved, enabling us to pay greater attention to entire missions and the interaction of a drone with humans and with its environment during the course of such a mission. In this paper, we present an indoor office drone assistant that is tasked to run errands and carry out simple tasks at our laboratory, while given instructions from and interacting with humans in the space. To accomplish its mission, the system has to be able to understand verbal instructions from humans, and perform subject to constraints from control and hardware limitations, uncertain localisation information, unpredictable and uncertain obstacles and environmental factors. We combine and evaluate the dialogue, navigation, flight control, depth perception and collision avoidance components. We discuss performance and limitations of our assistant at the component as well as the mission level. A 78% mission success rate was obtained over the course of 27 missions.
Understanding a users query intent behind a search is critical for modern search engine success. Accurate query intent prediction allows the search engine to better serve the users need by rendering results from more relevant categories. This paper aims to provide a comprehensive learning framework for modeling query intent under different stages of a search. We focus on the design for 1) predicting users intents as they type in queries on-the-fly in typeahead search using character-level models; and 2) accurate word-level intent prediction models for complete queries. Various deep learning components for query text understanding are experimented. Offline evaluation and online A/B test experiments show that the proposed methods are effective in understanding query intent and efficient to scale for online search systems.
In this document we describe a rationale for a research program aimed at building an open assistant in the game Minecraft, in order to make progress on the problems of natural language understanding and learning from dialogue.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا