No Arabic abstract
Applying the (infinite) density-matrix renormalisation group technique, we explore the effect of an explicit dimerisation on the ground-state phase diagram of the spin-1 $XXZ$ chain with single-ion anisotropy $D$. We demonstrate that the Haldane phase between large-$D$ and antiferromagnetic phases survives up to a critical dimerisation only. As a further new characteristic the dimerisation induces a direct continuous Ising quantum phase transition between the large-$D$ and antiferromagnetic phases with central charge $c=1/2$, which terminates at a critical end-point where $c=7/10$. Calculating the critical exponents of the order parameter, neutral gap and spin-spin-correlation function, we find $beta=1/8$ (1/24), $ u=1$ (5/9), and $eta=1/4$ (3/20), respectively, which proves the Ising (tricritical Ising) universality class in accordance with field-theoretical predictions.
Motivated by field-theoretic predictions we investigate the stable excitations that exist in two characteristic gapped phases of a spin-1 model with Ising-like and single-ion anisotropies. The sine-Gordon theory indicates a region close to the phase boundary where a stable breather exists besides the stable particles, that form the Haldane triplet at the Heisenberg isotropic point. The numerical data, obtained by means of the Density Matrix Renormalization Group, confirm this picture in the so-called large-D phase for which we give also a quantitative analysis of the bound states using standard perturbation theory. However, the situation turns out to be considerably more intricate in the Haldane phase where, to the best of our data, we do not observe stable breathers contrarily to what could be expected from the sine-Gordon model, but rather only the three modes predicted by a novel anisotropic extension of the Non-Linear Sigma Model studied here by means of a saddle-point approximation.
We show that a chain of Heisenberg spins interacting with long-range dipolar forces in a magnetic field h perpendicular to the chain exhibits a quantum critical point belonging to the two-dimensional Ising universality class. Within linear spin-wave theory the magnon dispersion for small momenta k is [Delta^2 + v_k^2 k^2]^{1/2}, where Delta^2 propto |h - h_c| and v_k^2 propto |ln k|. For fields close to h_c linear spin-wave theory breaks down and we investigate the system using density-matrix and functional renormalization group methods. The Ginzburg regime where non-Gaussian fluctuations are important is found to be rather narrow on the ordered side of the transition, and very broad on the disordered side.
Inelastic neutron scattering experiments on the S=1 quasi-one-dimensional bond-alternating antiferromagnet Ni(C9D24N4)(NO2)ClO4 have been performed under magnetic fields below and above a critical field Hc at which the energy gap closes. Normal field dependece of Zeeman splitting of the excited triplet modes below Hc has been observed, but the highest mode is unusually small and smears out with increasing field. This can be explained by an interaction with a low-lying two magnon continuum at q=pi that is present in dimerized chains but absent in uniform ones. Above Hc, we find only one excited mode, in stark contrast with three massive excitations previously observed in the structurally similar Haldane-gap material NDMAP [A. Zheludev et al., Phys. Rev. B 68, 134438 (2003)].
Frustration-free (FF) spin chains have a property that their ground state minimizes all individual terms in the chain Hamiltonian. We ask how entangled the ground state of a FF quantum spin-s chain with nearest-neighbor interactions can be for small values of s. While FF spin-1/2 chains are known to have unentangled ground states, the case s=1 remains less explored. We propose the first example of a FF translation-invariant spin-1 chain that has a unique highly entangled ground state and exhibits some signatures of a critical behavior. The ground state can be viewed as the uniform superposition of balanced strings of left and right parentheses separated by empty spaces. Entanglement entropy of one half of the chain scales as log(n)/2 + O(1), where n is the number of spins. We prove that the energy gap above the ground state is polynomial in 1/n. The proof relies on a new result concerning statistics of Dyck paths which might be of independent interest.
The stability of the magnetization $m=1/3$ plateau phase of the XXZ spin-1/2 Heisenberg chain with competing interactions is investigated upon switching on a staggered transverse magnetic field. Within a bosonization approach, it is shown that the low-energy properties of the model are described by an effective two-dimensional XY model in a three-fold symmetry-breaking field. A phase transition in the three-state Potts universality class is expected separating the $m=1/3$ plateau phase to a phase where the spins are polarized along the staggered magnetic field. The Z$_3$ critical properties of the transition are determined within the bosonization approach.