No Arabic abstract
For many real-world classification problems, e.g., sentiment classification, most existing machine learning methods are biased towards the majority class when the Imbalance Ratio (IR) is high. To address this problem, we propose a set convolution (SetConv) operation and an episodic training strategy to extract a single representative for each class, so that classifiers can later be trained on a balanced class distribution. We prove that our proposed algorithm is permutation-invariant despite the order of inputs, and experiments on multiple large-scale benchmark text datasets show the superiority of our proposed framework when compared to other SOTA methods.
As the Portable Document Format (PDF) file format increases in popularity, research in analysing its structure for text extraction and analysis is necessary. Detecting headings can be a crucial component of classifying and extracting meaningful data. This research involves training a supervised learning model to detect headings with features carefully selected through recursive feature elimination. The best performing classifier had an accuracy of 96.95%, sensitivity of 0.986 and a specificity of 0.953. This research into heading detection contributes to the field of PDF based text extraction and can be applied to the automation of large scale PDF text analysis in a variety of professional and policy based contexts.
Cross-media retrieval is to return the results of various media types corresponding to the query of any media type. Existing researches generally focus on coarse-grained cross-media retrieval. When users submit an image of Slaty-backed Gull as a query, coarse-grained cross-media retrieval treats it as Bird, so that users can only get the results of Bird, which may include other bird species with similar appearance (image and video), descriptions (text) or sounds (audio), such as Herring Gull. Such coarse-grained cross-media retrieval is not consistent with human lifestyle, where we generally have the fine-grained requirement of returning the exactly relevant results of Slaty-backed Gull instead of Herring Gull. However, few researches focus on fine-grained cross-media retrieval, which is a highly challenging and practical task. Therefore, in this paper, we first construct a new benchmark for fine-grained cross-media retrieval, which consists of 200 fine-grained subcategories of the Bird, and contains 4 media types, including image, text, video and audio. To the best of our knowledge, it is the first benchmark with 4 media types for fine-grained cross-media retrieval. Then, we propose a uniform deep model, namely FGCrossNet, which simultaneously learns 4 types of media without discriminative treatments. We jointly consider three constraints for better common representation learning: classification constraint ensures the learning of discriminative features, center constraint ensures the compactness characteristic of the features of the same subcategory, and ranking constraint ensures the sparsity characteristic of the features of different subcategories. Extensive experiments verify the usefulness of the new benchmark and the effectiveness of our FGCrossNet. They will be made available at https://github.com/PKU-ICST-MIPL/FGCrossNet_ACMMM2019.
Recent advances in research have demonstrated the effectiveness of knowledge graphs (KG) in providing valuable external knowledge to improve recommendation systems (RS). A knowledge graph is capable of encoding high-order relations that connect two objects with one or multiple related attributes. With the help of the emerging Graph Neural Networks (GNN), it is possible to extract both object characteristics and relations from KG, which is an essential factor for successful recommendations. In this paper, we provide a comprehensive survey of the GNN-based knowledge-aware deep recommender systems. Specifically, we discuss the state-of-the-art frameworks with a focus on their core component, i.e., the graph embedding module, and how they address practical recommendation issues such as scalability, cold-start and so on. We further summarize the commonly-used benchmark datasets, evaluation metrics as well as open-source codes. Finally, we conclude the survey and propose potential research directions in this rapidly growing field.
The TREC Deep Learning (DL) Track studies ad hoc search in the large data regime, meaning that a large set of human-labeled training data is available. Results so far indicate that the best models with large data may be deep neural networks. This paper supports the reuse of the TREC DL test collections in three ways. First we describe the data sets in detail, documenting clearly and in one place some details that are otherwise scattered in track guidelines, overview papers and in our associated MS MARCO leaderboard pages. We intend this description to make it easy for newcomers to use the TREC DL data. Second, because there is some risk of iteration and selection bias when reusing a data set, we describe the best practices for writing a paper using TREC DL data, without overfitting. We provide some illustrative analysis. Finally we address a number of issues around the TREC DL data, including an analysis of reusability.
Deep learning model trained by imbalanced data may not work satisfactorily since it could be determined by major classes and thus may ignore the classes with small amount of data. In this paper, we apply deep learning based imbalanced data classification for the first time to cellular macromolecular complexes captured by Cryo-electron tomography (Cryo-ET). We adopt a range of strategies to cope with imbalanced data, including data sampling, bagging, boosting, Genetic Programming based method and. Particularly, inspired from Inception 3D network, we propose a multi-path CNN model combining focal loss and mixup on the Cryo-ET dataset to expand the dataset, where each path had its best performance corresponding to each type of data and let the network learn the combinations of the paths to improve the classification performance. In addition, extensive experiments have been conducted to show our proposed method is flexible enough to cope with different number of classes by adjusting the number of paths in our multi-path model. To our knowledge, this work is the first application of deep learning methods of dealing with imbalanced data to the internal tissue classification of cell macromolecular complexes, which opened up a new path for cell classification in the field of computational biology.