Do you want to publish a course? Click here

A New Benchmark and Approach for Fine-grained Cross-media Retrieval

294   0   0.0 ( 0 )
 Added by Yuxin Peng
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

Cross-media retrieval is to return the results of various media types corresponding to the query of any media type. Existing researches generally focus on coarse-grained cross-media retrieval. When users submit an image of Slaty-backed Gull as a query, coarse-grained cross-media retrieval treats it as Bird, so that users can only get the results of Bird, which may include other bird species with similar appearance (image and video), descriptions (text) or sounds (audio), such as Herring Gull. Such coarse-grained cross-media retrieval is not consistent with human lifestyle, where we generally have the fine-grained requirement of returning the exactly relevant results of Slaty-backed Gull instead of Herring Gull. However, few researches focus on fine-grained cross-media retrieval, which is a highly challenging and practical task. Therefore, in this paper, we first construct a new benchmark for fine-grained cross-media retrieval, which consists of 200 fine-grained subcategories of the Bird, and contains 4 media types, including image, text, video and audio. To the best of our knowledge, it is the first benchmark with 4 media types for fine-grained cross-media retrieval. Then, we propose a uniform deep model, namely FGCrossNet, which simultaneously learns 4 types of media without discriminative treatments. We jointly consider three constraints for better common representation learning: classification constraint ensures the learning of discriminative features, center constraint ensures the compactness characteristic of the features of the same subcategory, and ranking constraint ensures the sparsity characteristic of the features of different subcategories. Extensive experiments verify the usefulness of the new benchmark and the effectiveness of our FGCrossNet. They will be made available at https://github.com/PKU-ICST-MIPL/FGCrossNet_ACMMM2019.



rate research

Read More

With the advancement in technology and the expansion of broadcasting, cross-media retrieval has gained much attention. It plays a significant role in big data applications and consists in searching and finding data from different types of media. In this paper, we provide a novel taxonomy according to the challenges faced by multi-modal deep learning approaches in solving cross-media retrieval, namely: representation, alignment, and translation. These challenges are evaluated on deep learning (DL) based methods, which are categorized into four main groups: 1) unsupervised methods, 2) supervised methods, 3) pairwise based methods, and 4) rank based methods. Then, we present some well-known cross-media datasets used for retrieval, considering the importance of these datasets in the context in of deep learning based cross-media retrieval approaches. Moreover, we also present an extensive review of the state-of-the-art problems and its corresponding solutions for encouraging deep learning in cross-media retrieval. The fundamental objective of this work is to exploit Deep Neural Networks (DNNs) for bridging the media gap, and provide researchers and developers with a better understanding of the underlying problems and the potential solutions of deep learning assisted cross-media retrieval. To the best of our knowledge, this is the first comprehensive survey to address cross-media retrieval under deep learning methods.
Traditional sentiment analysis approaches tackle problems like ternary (3-category) and fine-grained (5-category) classification by learning the tasks separately. We argue that such classification tasks are correlated and we propose a multitask approach based on a recurrent neural network that benefits by jointly learning them. Our study demonstrates the potential of multitask models on this type of problems and improves the state-of-the-art results in the fine-grained sentiment classification problem.
This paper considers the task of matching images and sentences by learning a visual-textual embedding space for cross-modal retrieval. Finding such a space is a challenging task since the features and representations of text and image are not comparable. In this work, we introduce an end-to-end deep multimodal convolutional-recurrent network for learning both vision and language representations simultaneously to infer image-text similarity. The model learns which pairs are a match (positive) and which ones are a mismatch (negative) using a hinge-based triplet ranking. To learn about the joint representations, we leverage our newly extracted collection of tweets from Twitter. The main characteristic of our dataset is that the images and tweets are not standardized the same as the benchmarks. Furthermore, there can be a higher semantic correlation between the pictures and tweets contrary to benchmarks in which the descriptions are well-organized. Experimental results on MS-COCO benchmark dataset show that our model outperforms certain methods presented previously and has competitive performance compared to the state-of-the-art. The code and dataset have been made available publicly.
Learning from the web can ease the extreme dependence of deep learning on large-scale manually labeled datasets. Especially for fine-grained recognition, which targets at distinguishing subordinate categories, it will significantly reduce the labeling costs by leveraging free web data. Despite its significant practical and research value, the webly supervised fine-grained recognition problem is not extensively studied in the computer vision community, largely due to the lack of high-quality datasets. To fill this gap, in this paper we construct two new benchmark webly supervised fine-grained datasets, termed WebFG-496 and WebiNat-5089, respectively. In concretely, WebFG-496 consists of three sub-datasets containing a total of 53,339 web training images with 200 species of birds (Web-bird), 100 types of aircrafts (Web-aircraft), and 196 models of cars (Web-car). For WebiNat-5089, it contains 5089 sub-categories and more than 1.1 million web training images, which is the largest webly supervised fine-grained dataset ever. As a minor contribution, we also propose a novel webly supervised method (termed {Peer-learning}) for benchmarking these datasets.~Comprehensive experimental results and analyses on two new benchmark datasets demonstrate that the proposed method achieves superior performance over the competing baseline models and states-of-the-art. Our benchmark datasets and the source codes of Peer-learning have been made available at {url{https://github.com/NUST-Machine-Intelligence-Laboratory/weblyFG-dataset}}.
Text style transfer aims to controllably generate text with targeted stylistic changes while maintaining core meaning from the source sentence constant. Many of the existing style transfer benchmarks primarily focus on individual high-level semantic changes (e.g. positive to negative), which enable controllability at a high level but do not offer fine-grained control involving sentence structure, emphasis, and content of the sentence. In this paper, we introduce a large-scale benchmark, StylePTB, with (1) paired sentences undergoing 21 fine-grained stylistic changes spanning atomic lexical, syntactic, semantic, and thematic transfers of text, as well as (2) compositions of multiple transfers which allow modeling of fine-grained stylistic changes as building blocks for more complex, high-level transfers. By benchmarking existing methods on StylePTB, we find that they struggle to model fine-grained changes and have an even more difficult time composing multiple styles. As a result, StylePTB brings novel challenges that we hope will encourage future research in controllable text style transfer, compositional models, and learning disentangled representations. Solving these challenges would present important steps towards controllable text generation.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا