Do you want to publish a course? Click here

Analysis of the tradeoff between health and economic impacts of the Covid-19 epidemic

78   0   0.0 ( 0 )
 Added by Chao Zhang
 Publication date 2021
  fields Economy Physics
and research's language is English




Ask ChatGPT about the research

Various measures have been taken in different countries to mitigate the Covid-19 epidemic. But, throughout the world, many citizens dont understand well how these measures are taken and even question the decisions taken by their government. Should the measures be more (or less) restrictive? Are they taken for a too long (or too short) period of time? To provide some quantitative elements of response to these questions, we consider the well-known SEIR model for the Covid-19 epidemic propagation and propose a pragmatic model of the government decision-making operation. Although simple and obviously improvable, the proposed model allows us to study the tradeoff between health and economic aspects in a pragmatic and insightful way. Assuming a given number of phases for the epidemic and a desired tradeoff between health and economic aspects, it is then possible to determine the optimal duration of each phase and the optimal severity level for each of them. The numerical analysis is performed for the case of France but the adopted approach can be applied to any country. One of the takeaway messages of this analysis is that being able to implement the optimal 4-phase epidemic management strategy in France would have led to 1.05 million infected people and a GDP loss of 231 billion euro instead of 6.88 million of infected and a loss of 241 billion euro. This indicates that, seen from the proposed model perspective, the effectively implemented epidemic management strategy is good economically, whereas substantial improvements might have been obtained in terms of health impact. Our analysis indicates that the lockdown/severe phase should have been more severe but shorter, and the adjustment phase occurred earlier. Due to the natural tendency of people to deviate from the official rules, updating measures every month over the whole epidemic episode seems to be more appropriate.



rate research

Read More

To contain the pandemic of coronavirus (COVID-19) in Mainland China, the authorities have put in place a series of measures, including quarantines, social distancing, and travel restrictions. While these strategies have effectively dealt with the critical situations of outbreaks, the combination of the pandemic and mobility controls has slowed Chinas economic growth, resulting in the first quarterly decline of Gross Domestic Product (GDP) since GDP began to be calculated, in 1992. To characterize the potential shrinkage of the domestic economy, from the perspective of mobility, we propose two new economic indicators: the New Venues Created (NVC) and the Volumes of Visits to Venue (V^3), as the complementary measures to domestic investments and consumption activities, using the data of Baidu Maps. The historical records of these two indicators demonstrated strong correlations with the past figures of Chinese GDP, while the status quo has dramatically changed this year, due to the pandemic. We hereby presented a quantitative analysis to project the impact of the pandemic on economies, using the recent trends of NVC and V^3. We found that the most affected sectors would be travel-dependent businesses, such as hotels, educational institutes, and public transportation, while the sectors that are mandatory to human life, such as workplaces, residential areas, restaurants, and shopping sites, have been recovering rapidly. Analysis at the provincial level showed that the self-sufficient and self-sustainable economic regions, with internal supplies, production, and consumption, have recovered faster than those regions relying on global supply chains.
Nursing homes and other long term-care facilities account for a disproportionate share of COVID-19 cases and fatalities worldwide. Outbreaks in U.S. nursing homes have persisted despite nationwide visitor restrictions beginning in mid-March. An early report issued by the Centers for Disease Control and Prevention identified staff members working in multiple nursing homes as a likely source of spread from the Life Care Center in Kirkland, Washington to other skilled nursing facilities. The full extent of staff connections between nursing homes---and the crucial role these connections serve in spreading a highly contagious respiratory infection---is currently unknown given the lack of centralized data on cross-facility nursing home employment. In this paper, we perform the first large-scale analysis of nursing home connections via shared staff using device-level geolocation data from 30 million smartphones, and find that 7 percent of smartphones appearing in a nursing home also appeared in at least one other facility---even after visitor restrictions were imposed. We construct network measures of nursing home connectedness and estimate that nursing homes have, on average, connections with 15 other facilities. Controlling for demographic and other factors, a homes staff-network connections and its centrality within the greater network strongly predict COVID-19 cases. Traditional federal regulatory metrics of nursing home quality are unimportant in predicting outbreaks, consistent with recent research. Results suggest that eliminating staff linkages between nursing homes could reduce COVID-19 infections in nursing homes by 44 percent.
In this paper we propose a theoretical model including a susceptible-infected-recovered-dead (SIRD) model of epidemic in a dynamic macroeconomic general equilibrium framework with agents mobility. The latter affect both their income (and consumption) and their probability of infecting and of being infected. Strategic complementarities among individual mobility choices drive the evolution of aggregate economic activity, while infection externalities caused by individual mobility affect disease diffusion. Rational expectations of forward looking agents on the dynamics of aggregate mobility and epidemic determine individual mobility decisions. The model allows to evaluate alternative scenarios of mobility restrictions, especially policies dependent on the state of epidemic. We prove the existence of an equilibrium and provide a recursive construction method for finding equilibrium(a), which also guides our numerical investigations. We calibrate the model by using Italian experience on COVID-19 epidemic in the period February 2020 - May 2021. We discuss how our economic SIRD (ESIRD) model produces a substantially different dynamics of economy and epidemic with respect to a SIRD model with constant agents mobility. Finally, by numerical explorations we illustrate how the model can be used to design an efficient policy of state-of-epidemic-dependent mobility restrictions, which mitigates the epidemic peaks stressing health system, and allows for trading-off the economic losses due to reduced mobility with the lower death rate due to the lower spread of epidemic.
The COVID-19 pandemic due to the SARS-CoV-2 coronavirus has directly impacted the public health and economy worldwide. To overcome this problem, countries have adopted different policies and non-pharmaceutical interventions for controlling the spread of the virus. This paper proposes the COVID-ABS, a new SEIR (Susceptible-Exposed-Infected-Recovered) agent-based model that aims to simulate the pandemic dynamics using a society of agents emulating people, business and government. Seven different scenarios of social distancing interventions were analyzed, with varying epidemiological and economic effects: (1) do nothing, (2) lockdown, (3) conditional lockdown, (4) vertical isolation, (5) partial isolation, (6) use of face masks, and (7) use of face masks together with 50% of adhesion to social isolation. In the impossibility of implementing scenarios with lockdown, which present the lowest number of deaths and highest impact on the economy, scenarios combining the use of face masks and partial isolation can be the more realistic for implementation in terms of social cooperation. The COVID-ABS model was implemented in Python programming language, with source code publicly available. The model can be easily extended to other societies by changing the input parameters, as well as allowing the creation of a multitude of other scenarios. Therefore, it is a useful tool to assist politicians and health authorities to plan their actions against the COVID-19 epidemic.
During the global spread of COVID-19, Japan has been among the top countries to maintain a relatively low number of infections, despite implementing limited institutional interventions. Using a Tokyo Metropolitan dataset, this study investigated how these limited intervention policies have affected public health and economic conditions in the COVID-19 context. A causal loop analysis suggested that there were risks to prematurely terminating such interventions. On the basis of this result and subsequent quantitative modelling, we found that the short-term effectiveness of a short-term pre-emptive stay-at-home request caused a resurgence in the number of positive cases, whereas an additional request provided a limited negative add-on effect for economic measures (e.g. the number of electronic word-of-mouth (eWOM) communications and restaurant visits). These findings suggest the superiority of a mild and continuous intervention as a long-term countermeasure under epidemic pressures when compared to strong intermittent interventions.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا