Do you want to publish a course? Click here

Nursing Home Staff Networks and COVID-19

73   0   0.0 ( 0 )
 Added by M. Keith Chen
 Publication date 2020
  fields Economy Physics
and research's language is English




Ask ChatGPT about the research

Nursing homes and other long term-care facilities account for a disproportionate share of COVID-19 cases and fatalities worldwide. Outbreaks in U.S. nursing homes have persisted despite nationwide visitor restrictions beginning in mid-March. An early report issued by the Centers for Disease Control and Prevention identified staff members working in multiple nursing homes as a likely source of spread from the Life Care Center in Kirkland, Washington to other skilled nursing facilities. The full extent of staff connections between nursing homes---and the crucial role these connections serve in spreading a highly contagious respiratory infection---is currently unknown given the lack of centralized data on cross-facility nursing home employment. In this paper, we perform the first large-scale analysis of nursing home connections via shared staff using device-level geolocation data from 30 million smartphones, and find that 7 percent of smartphones appearing in a nursing home also appeared in at least one other facility---even after visitor restrictions were imposed. We construct network measures of nursing home connectedness and estimate that nursing homes have, on average, connections with 15 other facilities. Controlling for demographic and other factors, a homes staff-network connections and its centrality within the greater network strongly predict COVID-19 cases. Traditional federal regulatory metrics of nursing home quality are unimportant in predicting outbreaks, consistent with recent research. Results suggest that eliminating staff linkages between nursing homes could reduce COVID-19 infections in nursing homes by 44 percent.



rate research

Read More

Various measures have been taken in different countries to mitigate the Covid-19 epidemic. But, throughout the world, many citizens dont understand well how these measures are taken and even question the decisions taken by their government. Should the measures be more (or less) restrictive? Are they taken for a too long (or too short) period of time? To provide some quantitative elements of response to these questions, we consider the well-known SEIR model for the Covid-19 epidemic propagation and propose a pragmatic model of the government decision-making operation. Although simple and obviously improvable, the proposed model allows us to study the tradeoff between health and economic aspects in a pragmatic and insightful way. Assuming a given number of phases for the epidemic and a desired tradeoff between health and economic aspects, it is then possible to determine the optimal duration of each phase and the optimal severity level for each of them. The numerical analysis is performed for the case of France but the adopted approach can be applied to any country. One of the takeaway messages of this analysis is that being able to implement the optimal 4-phase epidemic management strategy in France would have led to 1.05 million infected people and a GDP loss of 231 billion euro instead of 6.88 million of infected and a loss of 241 billion euro. This indicates that, seen from the proposed model perspective, the effectively implemented epidemic management strategy is good economically, whereas substantial improvements might have been obtained in terms of health impact. Our analysis indicates that the lockdown/severe phase should have been more severe but shorter, and the adjustment phase occurred earlier. Due to the natural tendency of people to deviate from the official rules, updating measures every month over the whole epidemic episode seems to be more appropriate.
To contain the pandemic of coronavirus (COVID-19) in Mainland China, the authorities have put in place a series of measures, including quarantines, social distancing, and travel restrictions. While these strategies have effectively dealt with the critical situations of outbreaks, the combination of the pandemic and mobility controls has slowed Chinas economic growth, resulting in the first quarterly decline of Gross Domestic Product (GDP) since GDP began to be calculated, in 1992. To characterize the potential shrinkage of the domestic economy, from the perspective of mobility, we propose two new economic indicators: the New Venues Created (NVC) and the Volumes of Visits to Venue (V^3), as the complementary measures to domestic investments and consumption activities, using the data of Baidu Maps. The historical records of these two indicators demonstrated strong correlations with the past figures of Chinese GDP, while the status quo has dramatically changed this year, due to the pandemic. We hereby presented a quantitative analysis to project the impact of the pandemic on economies, using the recent trends of NVC and V^3. We found that the most affected sectors would be travel-dependent businesses, such as hotels, educational institutes, and public transportation, while the sectors that are mandatory to human life, such as workplaces, residential areas, restaurants, and shopping sites, have been recovering rapidly. Analysis at the provincial level showed that the self-sufficient and self-sustainable economic regions, with internal supplies, production, and consumption, have recovered faster than those regions relying on global supply chains.
We analyse the economics and epidemiology of different scenarios for a phased restart of the UK economy. Our economic model is designed to address the unique features of the COVID-19 pandemic. Social distancing measures affect both supply and demand, and input-output constraints play a key role in restricting economic output. Standard models for production functions are not adequate to model the short-term effects of lockdown. A survey of industry analysts conducted by IHS Markit allows us to evaluate which inputs for each industry are absolutely necessary for production over a two month period. Our model also includes inventory dynamics and feedback between unemployment and consumption. We demonstrate that economic outcomes are very sensitive to the choice of production function, show how supply constraints cause strong network effects, and find some counter-intuitive effects, such as that reopening only a few industries can actually lower aggregate output. Occupation-specific data and contact surveys allow us to estimate how different industries affect the transmission rate of the disease. We investigate six different re-opening scenarios, presenting our best estimates for the increase in R0 and the increase in GDP. Our results suggest that there is a reasonable compromise that yields a relatively small increase in R0 and delivers a substantial boost in economic output. This corresponds to a situation in which all non-consumer facing industries reopen, schools are open only for workers who need childcare, and everyone who can work from home continues to work from home.
Background: A major question in Covid-19 research is whether democracies handled the Covid-19 pandemic crisis better or worse than authoritarian countries. However, it is important to consider the issues of democracy versus authoritarianism, and state fragility, when examining official Covid-19 death counts in research, because these factors can influence the accurate reporting of pandemic deaths by governments. In contrast, excess deaths are less prone to variability in differences in definitions of Covid-19 deaths and testing capacities across countries. Here we use excess pandemic deaths to explore potential relationships between political systems and public health outcomes. Methods: We address these issues by comparing the official government Covid-19 death counts in a well-established John Hopkins database to the generally more reliable excess mortality measure of Covid-19 deaths, taken from the recently released World Mortality Dataset. We put the comparison in the context of the political and fragile state dimensions. Findings: We find (1) significant potential underreporting of Covid-19 deaths by authoritarian governments and governments with high state fragility and (2) substantial geographic variation among countries and regions with regard to standard democracy indices. Additionally, we find that more authoritarian governments are (weakly) associated with more excess deaths during the pandemic than democratic governments. Interpretations: The inhibition and censorship of information flows, inherent to authoritarian states, likely results in major inaccuracies in pandemic statistics that confound global public health analyses. Thus, both excess pandemic deaths and official Covid-19 death counts should be examined in studies using death as an outcome variable.
Governments issue stay at home orders to reduce the spread of contagious diseases, but the magnitude of such orders effectiveness is uncertain. In the United States these orders were not coordinated at the national level during the coronavirus disease 2019 (COVID-19) pandemic, which creates an opportunity to use spatial and temporal variation to measure the policies effect with greater accuracy. Here, we combine data on the timing of stay-at-home orders with daily confirmed COVID-19 cases and fatalities at the county level in the United States. We estimate the effect of stay-at-home orders using a difference-in-differences design that accounts for unmeasured local variation in factors like health systems and demographics and for unmeasured temporal variation in factors like national mitigation actions and access to tests. Compared to counties that did not implement stay-at-home orders, the results show that the orders are associated with a 30.2 percent (11.0 to 45.2) reduction in weekly cases after one week, a 40.0 percent (23.4 to 53.0) reduction after two weeks, and a 48.6 percent (31.1 to 61.7) reduction after three weeks. Stay-at-home orders are also associated with a 59.8 percent (18.3 to 80.2) reduction in weekly fatalities after three weeks. These results suggest that stay-at-home orders reduced confirmed cases by 390,000 (170,000 to 680,000) and fatalities by 41,000 (27,000 to 59,000) within the first three weeks in localities where they were implemented.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا