Do you want to publish a course? Click here

Super-Eddington Emission from Accreting, Highly Magnetised Neutron Stars with a Multipolar Magnetic Field

62   0   0.0 ( 0 )
 Added by Nabil Brice
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

Pulsating ultra-luminous X-ray sources (PULXs) are characterised by an extremely large luminosity ($ > 10^{40} text{erg s}^{-1}$). While there is a general consensus that they host an accreting, magnetized neutron star (NS), the problem of how to produce luminosities $> 100$ times the Eddington limit, $L_E$, of a solar mass object is still debated. A promising explanation relies on the reduction of the opacities in the presence of a strong magnetic field, which allows for the local flux to be much larger than the Eddington flux. However, avoiding the onset of the propeller effect may be a serious problem. Here, we reconsider the problem of column accretion onto a highly magnetized NS, extending previously published calculations by relaxing the assumption of a pure dipolar field and allowing for more complex magnetic field topologies. We find that the maximum luminosity is determined primarily by the magnetic field strength near the NS surface. We also investigate other factors determining the accretion column geometry and the emergent luminosity, such as the assumptions on the parameters governing the accretion flow at the disk-magnetosphere boundary. We conclude that a strongly magnetized NS with a dipole component of $sim 10^{13} text{G}$, octupole component of $sim10^{14} text{G}$ and spin period $sim1 text{s}$ can produce a luminosity of $sim 10^{41} text{erg s}^{-1}$ while avoiding the propeller regime. We apply our model to two PULXs, NGC 5907 ULX-1 and NGC 7793 P13, and discuss how their luminosity and spin period rate can be explained in terms of different configurations, either with or without multipolar magnetic components.



rate research

Read More

The flow of a matter, accreting onto a magnetized neutron star, is accompanied by an electric current. The closing of the electric current occurs in the crust of a neutron stars in the polar region across the magnetic field. But the conductivity of the crust along the magnetic field greatly exceeds the conductivity across the field, so the current penetrates deep into the crust down up to the super conducting core. The magnetic field, generated by the accretion current, increases greatly with the depth of penetration due to the Hall conductivity of the crust is also much larger than the transverse conductivity. As a result, the current begins to flow mainly in the toroidal direction, creating a strong longitudinal magnetic field, far exceeding an initial dipole field. This field exists only in the narrow polar tube of $r$ width, narrowing with the depth, i.e. with increasing of the crust density $rho$, $rpropto rho^{-1/4}$. Accordingly, the magnetic field $B$ in the tube increases with the depth, $Bpropto rho^{1/2}$, and reaches the value of about $10^{17}$ Gauss in the core. It destroys super conducting vortices in the core of a star in the narrow region of the size of the order of ten centimeters. Because of generated density gradient of vortices they constantly flow into this dead zone and the number of vortices decreases, the magnetic field of a star decreases as well. The attenuation of the magnetic field is exponential, $B=B_0(1+t/tau)^{-1}$. The characteristic time of decreasing of the magnetic field $tau$ is equal to $tausimeq 10^3$ years. Thus, the magnetic field of accreted neutron stars decreases to values of $10^8 - 10^9$ Gauss during $10^7-10^6$ years.
We study long-term thermal evolution of neutron stars in soft X-ray transients (SXTs), taking the deep crustal heating into account consistently with the changes of the composition of the crust. We collect observational estimates of average accretion rates and thermal luminosities of such neutron stars and compare the theory with observations. We perform simulations of thermal evolution of accreting neutron stars, considering the gradual replacement of the original nonaccreted crust by the reprocessed accreted matter, the neutrino and photon energy losses, and the deep crustal heating due to nuclear reactions in the accreted crust. We test and compare results for different modern theoretical models. We update a compilation of the observational estimates of the thermal luminosities in quiescence and average accretion rates in the SXTs and compare the observational estimates with the theoretical results. Long-term thermal evolution of transiently accreting neutron stars is nonmonotonic. The quasi-equilibrium temperature in quiescence reaches a minimum and then increases toward the final steady state. The quasi-equilibrium thermal luminosity of a neutron star in an SXT can be substantially lower at the minimum than in the final state. This enlarges the range of possibilities for theoretical interpretation of observations of such neutron stars. The updates of the theory and observations leave unchanged the previous conclusions that the direct Urca process operates in relatively cold neutron stars and that an accreted heat-blanketing envelope is likely present in relatively hot neutron stars in the SXTs in quiescence. The results of the comparison of theory with observations favor suppression of the triplet pairing type of nucleon superfluidity in the neutron-star matter.
We report the analysis of a highly magnetised neutron star in the Large Magellanic Cloud (LMC). The high mass X-ray binary pulsar Swift J045106.8-694803 has been observed with Swift X-ray telescope (XRT) in 2008, the Rossi X-ray Timing Explorer (RXTE) in 2011 and the X-ray Multi-Mirror Mission - Newton (XMM-Newton) in 2012. The change in spin period over these four years indicates a spin-up rate of -5.01+/-0.06 s/yr, amongst the highest observed for an accreting pulsar. This spin-up rate can be accounted for using Ghosh and Lambs (1979) accretion theory assuming it has a magnetic field of (1.2 +0.2 -0.7)x10^14 Gauss. This is over the quantum critical field value. There are very few accreting pulsars with such high surface magnetic fields and this is the first of which to be discovered in the LMC. The large spin-up rate is consistent with Swift Burst Alert Telescope (BAT) observations which show that Swift J045106.8-694803 has had a consistently high X-ray luminosity for at least five years. Optical spectra have been used to classify the optical counterpart of Swift J045106.8-694803 as a B0-1 III-V star and a possible orbital period of 21.631+/-0.005 days has been found from MACHO optical photometry.
156 - Maxim Lyutikov 2014
We discuss properties of the ultra-luminous $X$-ray source in the galaxy M82, NuSTAR J095551+6940.8, containing an accreting neutron star. The neutron star has surface magnetic field $ B_{NS} approx 1.4 times 10^{13 } , {rm G}$ and experiences accretion rate of $9 times 10^{-7} M_odot {rm , yr}^{-1} $. The magnetospheric radius, close to the corotation radius, is $sim 2 times 10^8$ cm. The accretion torque on the neutron star is reduce well below what is expected in a simple magnetospheric accretion due to effective penetration of the stellar magnetic field into the disk beyond the corotation radius. As a result, the radiative force of the surface emission does not lead to strong coronal wind, but pushes plasma along magnetic field lines towards the equatorial disk. The neutron star is nearly an orthogonal rotator, with the angle between the rotation axis and the magnetic moment $geq 80$ degrees. Accretion occurs through optically thick -- geometrically thin and flat accretion curtain, which cuts across the polar cap. High radiation pressure from the neutron star surface is nevertheless smaller than that the ram pressure of the accreting material flowing through the curtain, and thus fails to stop the accretion. At distances below few stellar radii the magnetic suppression of the scattering cross-section becomes important. The $X$-ray luminosity (pulsed and persistent components) comes both from the neutron star surface as a hard $X$-ray component and as a soft component from reprocessing by the accretion disk.
Recent studies show that accretion flows around weakly magnetic Neutron Stars undergo multiple shocks, before reaching the surface of the star, which contribute to the spectral and timing variabilities observed in the X-Rays. Here, we report, for the first time, the spectral properties of a unified model of shocked accretion flows around Neutron Stars, based on the Two-Component Advective Flow paradigm. We compare our theoretical results with the X-Ray spectral features of Z and Atoll sources, across different states. We also fit RXTE/PCA spectra of Sco X-1 and 4U 1705-44 to show the potential application of this new model.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا