No Arabic abstract
Recent studies show that accretion flows around weakly magnetic Neutron Stars undergo multiple shocks, before reaching the surface of the star, which contribute to the spectral and timing variabilities observed in the X-Rays. Here, we report, for the first time, the spectral properties of a unified model of shocked accretion flows around Neutron Stars, based on the Two-Component Advective Flow paradigm. We compare our theoretical results with the X-Ray spectral features of Z and Atoll sources, across different states. We also fit RXTE/PCA spectra of Sco X-1 and 4U 1705-44 to show the potential application of this new model.
3D MHD simulation of accretion onto neutron stars have shown in the last few years that the footprint (hotspot) of the accretion flow changes with time. Two different kinds of accretion, namely the funnel flow and the equatorial accretion produced by instabilities at the inner disk, produce different kinds of motion of the hotspot. The funnel flow produces hotspots that move around the magnetic pole, while instabilities produce other hotspots that appear randomly and move along the equator or slightly above. The angular velocities of the two hotspots are different, the equatorial one being higher and both close to the Keplerian velocity in the inner region. Modeling of the lightcurves of these hotspots with Monte Carlo simulations show that the signatures produced in power specra by them, if observed, are QPOs plus low frequency components. Their frequencies, general behavior and features describe correctly most of the properties of kHz QPOs, if we assume the funnel flow hotspots as the origin of the lower kHz QPO and instabilities as the origin of the upper kHz QPO.
The crust of accreting neutron stars plays a central role in many different observational phenomena. In these stars, heavy elements produced by H-He burning in the rapid proton capture (rp-) process continually freeze to form new crust. In this paper, we explore the expected composition of the solid phase. We first demonstrate using molecular dynamics that two distinct types of chemical separation occur, depending on the composition of the rp-process ashes. We then calculate phase diagrams for three-component mixtures and use them to determine the allowed crust compositions. We show that, for the large range of atomic numbers produced in the rp-process ($Zsim 10$--$50$), the solid that forms has only a small number of available compositions. We conclude that accreting neutron star crusts should be polycrystalline, with domains of distinct composition. Our results motivate further work on the size of the compositional domains, and have implications for crust physics and accreting neutron star phenomenology.
The flow of a matter, accreting onto a magnetized neutron star, is accompanied by an electric current. The closing of the electric current occurs in the crust of a neutron stars in the polar region across the magnetic field. But the conductivity of the crust along the magnetic field greatly exceeds the conductivity across the field, so the current penetrates deep into the crust down up to the super conducting core. The magnetic field, generated by the accretion current, increases greatly with the depth of penetration due to the Hall conductivity of the crust is also much larger than the transverse conductivity. As a result, the current begins to flow mainly in the toroidal direction, creating a strong longitudinal magnetic field, far exceeding an initial dipole field. This field exists only in the narrow polar tube of $r$ width, narrowing with the depth, i.e. with increasing of the crust density $rho$, $rpropto rho^{-1/4}$. Accordingly, the magnetic field $B$ in the tube increases with the depth, $Bpropto rho^{1/2}$, and reaches the value of about $10^{17}$ Gauss in the core. It destroys super conducting vortices in the core of a star in the narrow region of the size of the order of ten centimeters. Because of generated density gradient of vortices they constantly flow into this dead zone and the number of vortices decreases, the magnetic field of a star decreases as well. The attenuation of the magnetic field is exponential, $B=B_0(1+t/tau)^{-1}$. The characteristic time of decreasing of the magnetic field $tau$ is equal to $tausimeq 10^3$ years. Thus, the magnetic field of accreted neutron stars decreases to values of $10^8 - 10^9$ Gauss during $10^7-10^6$ years.
{We investigate the coherence of the twin kilohertz quasi-periodic oscillations (kHz QPOs) in the low-mass X-ray binary (LMXB) theoretically. The profile of upper kHz QPO, interpreted as Keplerian frequency, is ascribed to the radial extent of the kHz QPO emission region, associated with the transitional layer at the magnetosphere-disk boundary, which corresponds to the coherence of upper kHz QPO. The theoretical model for Q-factor of upper kHz QPO is applied to the observational data of five Atoll and five Z sources, and the consistence is implied.
Measuring the spin of Accreting Neutron Stars is important because it can provide constraints on the Equation of State of ultra-dense matter. Particularly crucial to our physical understanding is the discovery of sub-millisecond pulsars, because this will immediately rule out many proposed models for the ground state of dense matter. So far, it has been impossible to accomplish this because, for still unknown reasons, only a small amount of Accreting Neutron Stars exhibit coherent pulsations. An intriguing explanation for the lack of pulsations is that they form only on neutron stars accreting with a very low average mass accretion rate. I have searched pulsations in the faintest persistent X-ray source known to date and I found no evidence for pulsations. The implications for accretion theory are very stringent, clearly showing that our understanding of the pulse formation process is not complete. I discuss which sources are optimal to continue the search of sub-ms pulsars and which are the new constraints that theoretical models need to explain to provide a complete description of these systems