Do you want to publish a course? Click here

Science with the TianQin Observatory: Preliminary Results on Testing the No-hair Theorem with EMRI

80   0   0.0 ( 0 )
 Added by Jian-dong Zhang
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

Constituted with a massive black hole and a stellar mass compact object, Extreme Mass Ratio Inspiral (EMRI) events hold unique opportunity for the study of massive black holes, such as by measuring and checking the relations among the mass, spin and quadrupole moment of a massive black hole, putting the no-hair theorem to test. TianQin is a planned space-based gravitational wave observatory and EMRI is one of its main types of sources. It is important to estimate the capacity of TianQin on testing the no-hair theorem with EMRIs. In this work, we use the analytic kludge waveform with quadrupole moment corrections and study how the quadrupole moment can be constrained with TianQin. We find that TianQin can measure the dimensionless quadrupole moment parameter with accuracy to the level of $10^{-5}$ under suitable scenarios. The choice of the waveform cutoff is found to have significant effect on the result: if the Schwarzschild cutoff is used, the accuracy depends strongly on the mass of the massive black hole, while the spin has negligible impact; if the Kerr cutoff is used, however, the dependence on the spin is more significant. We have also analyzed the cases when TianQin is observing simultaneously with other detectors such as LISA.



rate research

Read More

We analyze gravitational-wave data from the first LIGO detection of a binary black-hole merger (GW150914) in search of the ringdown of the remnant black hole. Using observations beginning at the peak of the signal, we find evidence of the fundamental quasinormal mode and at least one overtone, both associated with the dominant angular mode ($ell=m=2$), with $3.6sigma$ confidence. A ringdown model including overtones allows us to measure the final mass and spin magnitude of the remnant exclusively from postinspiral data, obtaining an estimate in agreement with the values inferred from the full signal. The mass and spin values we measure from the ringdown agree with those obtained using solely the fundamental mode at a later time, but have smaller uncertainties. Agreement between the postinspiral measurements of mass and spin and those using the full waveform supports the hypothesis that the GW150914 merger produced a Kerr black hole, as predicted by general relativity, and provides a test of the no-hair theorem at the ${sim}10%$ level. An independent measurement of the frequency of the first overtone yields agreement with the no-hair hypothesis at the ${sim 20}%$ level. As the detector sensitivity improves and the detected population of black hole mergers grows, we can expect that using overtones will provide even stronger tests.
151 - Eric Thrane , Paul Lasky , 2017
General relativitys no-hair theorem states that isolated astrophysical black holes are described by only two numbers: mass and spin. As a consequence, there are strict relationships between the frequency and damping time of the different modes of a perturbed Kerr black hole. Testing the no-hair theorem has been a longstanding goal of gravitational-wave astronomy. The recent detection of gravitational waves from black hole mergers would seem to make such tests imminent. We investigate how constraints on black hole ringdown parameters scale with the loudness of the ringdown signal---subject to the constraint that the post-merger remnant must be allowed to settle into a perturbative, Kerr-like state. In particular, we require that---for a given detector---the gravitational waveform predicted by numerical relativity is indistinguishable from an exponentially damped sine after time $t^text{cut}$. By requiring the post-merger remnant to settle into such a perturbative state, we find that confidence intervals for ringdown parameters do not necessarily shrink with louder signals. In at least some cases, more sensitive measurements probe later times without necessarily providing tighter constraints on ringdown frequencies and damping times. Preliminary investigations are unable to explain this result in terms of a numerical relativity artifact.
In this work, we study the prospect of detecting the stochastic gravitational-wave background with the TianQin observatory. We consider both astrophysical-origin and cosmological-origin sources, including stellar-mass binary black holes, binary neutron stars, Galactic white dwarves, inflation, first order phase transition, and cosmic defects. For the detector configurations, we considered TianQin, TianQin I+II and TianQin + LISA. We studied the detectability of stochastic gravitational-wave backgrounds with the assumed methods of both cross-correlation and null channel, and present the corresponding power-law integrated sensitivity curves. We introduce the definition of the joint foreground with a network of detectors. With the joint foreground, the number of resolved double white dwarves in the Galaxy will be increased by 5% $sim$ 22% compared with simple combination of individual detectors. The astrophysical background from the binary black holes and the binary neutron stars under the theoretical models are predicted to be detectable with signal-to-noise ratio of around 10 after five years operation. As for the cosmological sources, their models are highly uncertain, and we only roughly estimate the detection capability under certain cases.
We study the prospect of using TianQin to detect stellar-mass binary black holes (SBBHs). We estimate the expected detection number as well as the precision of parameter estimation on SBBH inspirals, using five different population models. We note TianQin can possibly detect a few SBBH inspirals with signal to noise ratios greater than 12; lowering the threshold and combining multiple detectors can both boost the detection number. The source parameters can be recovered with good precision for most events above the detection threshold. For example, the precision of the merger time most likely occurs near 1s, making it possible to guide the detection of the ground-based detectors, the precision of the eccentricity $e_0$ most likely occurs near $10^{-4}$, making it possible to distinguish the formation channels, and the precision of the mass parameter is better than $10^{-6}$ in general and most likely occurs near $10^{-7}$. We note, in particular, that for a typical merger event, the error volume is likely to be small enough to contain only the host galaxy, which could greatly help in the study of gravitational wave cosmology and relevant studies through the multimessenger observation.
We explore the prospects of detecting of Galactic double white dwarf (DWD) binaries with the space-based gravitational wave (GW) observatory TianQin. In this work, we analyze both a sample of currently known DWDs and a realistic synthetic population of DWDs to assess the number of guaranteed detections and the full capacity of the mission. We find that TianQin can detect 12 out of $sim100$ known DWDs; GW signals of these binaries can be modeled in detail ahead of the mission launch, and therefore they can be used as verification sources. Besides we estimate that TianQin has potential to detect as many as $10^4$ DWDs in the Milky Way. TianQin is expected to measure their orbital periods and amplitudes with accuracies of $sim10^{-7}$ and $sim0.2$, respectively, and to localize on the sky a large fraction (39%) of the detected population to better than 1 deg$^2$. We conclude that TianQin has the potential to significantly advance our knowledge on Galactic DWDs by increasing the sample up to 2 orders of magnitude, and will allow their multi-messenger studies in combination with electromagnetic telescopes. We also test the possibilities of different configurations of TianQin: (1) the same mission with a different orientation, (2) two perpendicular constellations combined into a network, and (3) the combination of the network with the ESA-led Laser Interferometer Space Antenna. We find that the network of detectors boosts the accuracy on the measurement of source parameters by 1-2 orders of magnitude, with the improvement on sky localization being the most significant.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا