Do you want to publish a course? Click here

On the Structure of Periodic Eigenvalues of the Vectorial $p$-Laplacian

61   0   0.0 ( 0 )
 Added by Meirong Zhang Prof.
 Publication date 2021
  fields
and research's language is English




Ask ChatGPT about the research

In this paper we will solve an open problem raised by Manasevich and Mawhin twenty years ago on the structure of the periodic eigenvalues of the vectorial $p$-Laplacian. This is an Euler-Lagrangian equation on the plane or in higher dimensional Euclidean spaces. The main result obtained is that for any exponent $p$ other than $2$, the vectorial $p$-Laplacian on the plane will admit infinitely many different sequences of periodic eigenvalues with a given period. These sequences of eigenvalues are constructed using the notion of scaling momenta we will introduce. The whole proof is based on the complete integrability of the equivalent Hamiltonian system, the tricky reduction to $2$-dimensional dynamical systems, and a number-theoretical distinguishing between different sequences of eigenvalues. Some numerical simulations to the new sequences of eigenvalues and eigenfunctions will be given. Several further conjectures towards to the panorama of the spectral sets will be imposed.



rate research

Read More

We investigate multiplicity and symmetry properties of higher eigenvalues and eigenfunctions of the $p$-Laplacian under homogeneous Dirichlet boundary conditions on certain symmetric domains $Omega subset mathbb{R}^N$. By means of topological arguments, we show how symmetries of $Omega$ help to construct subsets of $W_0^{1,p}(Omega)$ with suitably high Krasnoselskiu{i} genus. In particular, if $Omega$ is a ball $B subset mathbb{R}^N$, we obtain the following chain of inequalities: $$ lambda_2(p;B) leq dots leq lambda_{N+1}(p;B) leq lambda_ominus(p;B). $$ Here $lambda_i(p;B)$ are variational eigenvalues of the $p$-Laplacian on $B$, and $lambda_ominus(p;B)$ is the eigenvalue which has an associated eigenfunction whose nodal set is an equatorial section of $B$. If $lambda_2(p;B)=lambda_ominus(p;B)$, as it holds true for $p=2$, the result implies that the multiplicity of the second eigenvalue is at least $N$. In the case $N=2$, we can deduce that any third eigenfunction of the $p$-Laplacian on a disc is nonradial. The case of other symmetric domains and the limit cases $p=1$, $p=infty$ are also considered.
We obtain asymptotic estimates for the eigenvalues of the p(x)-Laplacian defined consistently with a homogeneous notion of first eigenvalue recently introduced in the literature.
237 - Bobo Hua , Lili Wang 2018
In this paper, we study eigenvalues and eigenfunctions of $p$-Laplacians with Dirichlet boundary condition on graphs. We characterize the first eigenfunction (and the maximum eigenfunction for a bipartite graph) via the sign condition. By the uniqueness of the first eigenfunction of $p$-Laplacian, as $pto 1,$ we identify the Cheeger constant of a symmetric graph with that of the quotient graph. By this approach, we calculate various Cheeger constants of spherically symmetric graphs.
We show that zero is not an eigenvalue of the conformal Laplacian for generic Riemannian metrics. We also discuss non-compactness for sequences of metrics with growing number of negative eigenvalues of the conformal Laplacian.
Let $G$ be a connected undirected graph with $n$, $nge 3$, vertices and $m$ edges. Denote by $rho_1 ge rho_2 ge cdots > rho_n =0$ the normalized Laplacian eigenvalues of $G$. Upper and lower bounds of $rho_i$, $i=1,2,ldots , n-1$, are determined in terms of $n$ and general Randi c index, $R_{-1}$.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا