No Arabic abstract
Saliency methods are widely used to interpret neural network predictions, but different variants of saliency methods often disagree even on the interpretations of the same prediction made by the same model. In these cases, how do we identify when are these interpretations trustworthy enough to be used in analyses? To address this question, we conduct a comprehensive and quantitative evaluation of saliency methods on a fundamental category of NLP models: neural language models. We evaluate the quality of prediction interpretations from two perspectives that each represents a desirable property of these interpretations: plausibility and faithfulness. Our evaluation is conducted on four different datasets constructed from the existing human annotation of syntactic and semantic agreements, on both sentence-level and document-level. Through our evaluation, we identified various ways saliency methods could yield interpretations of low quality. We recommend that future work deploying such methods to neural language models should carefully validate their interpretations before drawing insights.
Contextualized representations trained over large raw text data have given remarkable improvements for NLP tasks including question answering and reading comprehension. There have been works showing that syntactic, semantic and word sense knowledge are contained in such representations, which explains why they benefit such tasks. However, relatively little work has been done investigating commonsense knowledge contained in contextualized representations, which is crucial for human question answering and reading comprehension. We study the commonsense ability of GPT, BERT, XLNet, and RoBERTa by testing them on seven challenging benchmarks, finding that language modeling and its variants are effective objectives for promoting models commonsense ability while bi-directional context and larger training set are bonuses. We additionally find that current models do poorly on tasks require more necessary inference steps. Finally, we test the robustness of models by making dual test cases, which are correlated so that the correct prediction of one sample should lead to correct prediction of the other. Interestingly, the models show confusion on these test cases, which suggests that they learn commonsense at the surface rather than the deep level. We release a test set, named CATs publicly, for future research.
In this work, we propose a new language modeling paradigm that has the ability to perform both prediction and moderation of information flow at multiple granularities: neural lattice language models. These models construct a lattice of possible paths through a sentence and marginalize across this lattice to calculate sequence probabilities or optimize parameters. This approach allows us to seamlessly incorporate linguistic intuitions - including polysemy and existence of multi-word lexical items - into our language model. Experiments on multiple language modeling tasks show that English neural lattice language models that utilize polysemous embeddings are able to improve perplexity by 9.95% relative to a word-level baseline, and that a Chinese model that handles multi-character tokens is able to improve perplexity by 20.94% relative to a character-level baseline.
Given the fast development of analysis techniques for NLP and speech processing systems, few systematic studies have been conducted to compare the strengths and weaknesses of each method. As a step in this direction we study the case of representations of phonology in neural network models of spoken language. We use two commonly applied analytical techniques, diagnostic classifiers and representational similarity analysis, to quantify to what extent neural activation patterns encode phonemes and phoneme sequences. We manipulate two factors that can affect the outcome of analysis. First, we investigate the role of learning by comparing neural activations extracted from trained versus randomly-initialized models. Second, we examine the temporal scope of the activations by probing both local activations corresponding to a few milliseconds of the speech signal, and global activations pooled over the whole utterance. We conclude that reporting analysis results with randomly initialized models is crucial, and that global-scope methods tend to yield more consistent results and we recommend their use as a complement to local-scope diagnostic methods.
Humans carry stereotypic tacit assumptions (STAs) (Prince, 1978), or propositional beliefs about generic concepts. Such associations are crucial for understanding natural language. We construct a diagnostic set of word prediction prompts to evaluate whether recent neural contextualized language models trained on large text corpora capture STAs. Our prompts are based on human responses in a psychological study of conceptual associations. We find models to be profoundly effective at retrieving concepts given associated properties. Our results demonstrate empirical evidence that stereotypic conceptual representations are captured in neural models derived from semi-supervised linguistic exposure.
Recurrent neural language models are the state-of-the-art models for language modeling. When the vocabulary size is large, the space taken to store the model parameters becomes the bottleneck for the use of recurrent neural language models. In this paper, we introduce a simple space compression method that randomly shares the structured parameters at both the input and output embedding layers of the recurrent neural language models to significantly reduce the size of model parameters, but still compactly represent the original input and output embedding layers. The method is easy to implement and tune. Experiments on several data sets show that the new method can get similar perplexity and BLEU score results while only using a very tiny fraction of parameters.