Do you want to publish a course? Click here

Censored Semi-Bandits for Resource Allocation

131   0   0.0 ( 0 )
 Added by Arun Verma
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

We consider the problem of sequentially allocating resources in a censored semi-bandits setup, where the learner allocates resources at each step to the arms and observes loss. The loss depends on two hidden parameters, one specific to the arm but independent of the resource allocation, and the other depends on the allocated resource. More specifically, the loss equals zero for an arm if the resource allocated to it exceeds a constant (but unknown) arm dependent threshold. The goal is to learn a resource allocation that minimizes the expected loss. The problem is challenging because the loss distribution and threshold value of each arm are unknown. We study this setting by establishing its `equivalence to Multiple-Play Multi-Armed Bandits (MP-MAB) and Combinatorial Semi-Bandits. Exploiting these equivalences, we derive optimal algorithms for our problem setting using known algorithms for MP-MAB and Combinatorial Semi-Bandits. The experiments on synthetically generated data validate the performance guarantees of the proposed algorithms.



rate research

Read More

254 - Zheng Wen , Branislav Kveton , 2014
A stochastic combinatorial semi-bandit is an online learning problem where at each step a learning agent chooses a subset of ground items subject to combinatorial constraints, and then observes stochastic weights of these items and receives their sum as a payoff. In this paper, we consider efficient learning in large-scale combinatorial semi-bandits with linear generalization, and as a solution, propose two learning algorithms called Combinatorial Linear Thompson Sampling (CombLinTS) and Combinatorial Linear UCB (CombLinUCB). Both algorithms are computationally efficient as long as the offline version of the combinatorial problem can be solved efficiently. We establish that CombLinTS and CombLinUCB are also provably statistically efficient under reasonable assumptions, by developing regret bounds that are independent of the problem scale (number of items) and sublinear in time. We also evaluate CombLinTS on a variety of problems with thousands of items. Our experiment results demonstrate that CombLinTS is scalable, robust to the choice of algorithm parameters, and significantly outperforms the best of our baselines.
In distributed machine learning, data is dispatched to multiple machines for processing. Motivated by the fact that similar data points often belong to the same or similar classes, and more generally, classification rules of high accuracy tend to be locally simple but globally complex (Vapnik & Bottou 1993), we propose data dependent dispatching that takes advantage of such structure. We present an in-depth analysis of this model, providing new algorithms with provable worst-case guarantees, analysis proving existing scalable heuristics perform well in natural non worst-case conditions, and techniques for extending a dispatching rule from a small sample to the entire distribution. We overcome novel technical challenges to satisfy important conditions for accurate distributed learning, including fault tolerance and balancedness. We empirically compare our approach with baselines based on random partitioning, balanced partition trees, and locality sensitive hashing, showing that we achieve significantly higher accuracy on both synthetic and real world image and advertising datasets. We also demonstrate that our technique strongly scales with the available computing power.
User dissatisfaction due to buffering pauses during streaming is a significant cost to the system, which we model as a non-decreasing function of the frequency of buffering pause. Minimization of total user dissatisfaction in a multi-channel cellular network leads to a non-convex problem. Utilizing a combinatorial structure in this problem, we first propose a polynomial time joint admission control and channel allocation algorithm which is provably (almost) optimal. This scheme assumes that the base station (BS) knows the frame statistics of the streams. In a more practical setting, where these statistics are not available a priori at the BS, a learning based scheme with provable guarantees is developed. This learning based scheme has relation to regret minimization in multi-armed bandits with non-i.i.d. and delayed reward (cost). All these algorithms require none to minimal feedback from the user equipment to the base station regarding the states of the media player buffer at the application layer, and hence, are of practical interest.
We consider a resource-aware variant of the classical multi-armed bandit problem: In each round, the learner selects an arm and determines a resource limit. It then observes a corresponding (random) reward, provided the (random) amount of consumed resources remains below the limit. Otherwise, the observation is censored, i.e., no reward is obtained. For this problem setting, we introduce a measure of regret, which incorporates the actual amount of allocated resources of each learning round as well as the optimality of realizable rewards. Thus, to minimize regret, the learner needs to set a resource limit and choose an arm in such a way that the chance to realize a high reward within the predefined resource limit is high, while the resource limit itself should be kept as low as possible. We derive the theoretical lower bound on the cumulative regret and propose a learning algorithm having a regret upper bound that matches the lower bound. In a simulation study, we show that our learning algorithm outperforms straightforward extensions of standard multi-armed bandit algorithms.
Over the past decade a wide spectrum of machine learning models have been developed to model the neurodegenerative diseases, associating biomarkers, especially non-intrusive neuroimaging markers, with key clinical scores measuring the cognitive status of patients. Multi-task learning (MTL) has been commonly utilized by these studies to address high dimensionality and small cohort size challenges. However, most existing MTL approaches are based on linear models and suffer from two major limitations: 1) they cannot explicitly consider upper/lower bounds in these clinical scores; 2) they lack the capability to capture complicated non-linear interactions among the variables. In this paper, we propose Subspace Network, an efficient deep modeling approach for non-linear multi-task censored regression. Each layer of the subspace network performs a multi-task censored regression to improve upon the predictions from the last layer via sketching a low-dimensional subspace to perform knowledge transfer among learning tasks. Under mild assumptions, for each layer the parametric subspace can be recovered using only one pass of training data. Empirical results demonstrate that the proposed subspace network quickly picks up the correct parameter subspaces, and outperforms state-of-the-arts in predicting neurodegenerative clinical scores using information in brain imaging.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا