Do you want to publish a course? Click here

Local, Expressive, Quantum-Number-Preserving VQE Ansatze for Fermionic Systems

49   0   0.0 ( 0 )
 Added by Robert Parrish
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

We propose VQE circuit fabrics with advantageous properties for the simulation of strongly correlated ground and excited states of molecules and materials under the Jordan-Wigner mapping that can be implemented linearly locally and preserve all relevant quantum numbers: the number of spin up ($alpha$) and down ($beta$) electrons and the total spin squared. We demonstrate that our entangler circuits are expressive already at low depth and parameter count, appear to become universal, and may be trainable without having to cross regions of vanishing gradient, when the number of parameters becomes sufficiently large and when these parameters are suitably initialized. One particularly appealing construction achieves this with just orbital rotations and pair exchange gates. We derive optimal four-term parameter shift rules for and provide explicit decompositions of our quantum number preserving gates and perform numerical demonstrations on highly correlated molecules on up to 20 qubits.

rate research

Read More

We develop a framework for analyzing layered quantum algorithms such as quantum alternating operator ansatze. Our framework relates quantum cost gradient operators, derived from the cost and mixing Hamiltonians, to classical cost difference functions that reflect cost function neighborhood structure. By considering QAOA circuits from the Heisenberg picture, we derive exact general expressions for expectation values as series expansions in the algorithm parameters, cost gradient operators, and cost difference functions. This enables novel interpretability and insight into QAOA behavior in various parameter regimes. For single- level QAOA1 we show the leading-order changes in the output probabilities and cost expectation value explicitly in terms of classical cost differences, for arbitrary cost functions. This demonstrates that, for sufficiently small positive parameters, probability flows from lower to higher cost states on average. By selecting signs of the parameters, we can control the direction of flow. We use these results to derive a classical random algorithm emulating QAOA1 in the small-parameter regime, i.e., that produces bitstring samples with the same probabilities as QAOA1 up to small error. For deeper QAOAp circuits we apply our framework to derive analogous and additional results in several settings. In particular we show QAOA always beats random guessing. We describe how our framework incorporates cost Hamiltonian locality for specific problem classes, including causal cone approaches, and applies to QAOA performance analysis with arbitrary parameters. We illuminate our results with a number of examples including applications to QUBO problems, MaxCut, and variants of MaxSat. We illustrate the application to QAOA circuits using mixing unitaries beyond the transverse-field mixer through two examples of constrained optimization, Max Independent Set and Graph Coloring.
The ability to simulate a fermionic system on a quantum computer is expected to revolutionize chemical engineering, materials design, nuclear physics, to name a few. Thus, optimizing the simulation circuits is of significance in harnessing the power of quantum computers. Here, we address this problem in two aspects. In the fault-tolerant regime, we optimize the $rzgate$ and $tgate$ gate counts along with the ancilla qubit counts required, assuming the use of a product-formula algorithm for implementation. We obtain a savings ratio of two in the gate counts and a savings ratio of eleven in the number of ancilla qubits required over the state of the art. In the pre-fault tolerant regime, we optimize the two-qubit gate counts, assuming the use of the variational quantum eigensolver (VQE) approach. Specific to the latter, we present a framework that enables bootstrapping the VQE progression towards the convergence of the ground-state energy of the fermionic system. This framework, based on perturbation theory, is capable of improving the energy estimate at each cycle of the VQE progression, by about a factor of three closer to the known ground-state energy compared to the standard VQE approach in the test-bed, classically-accessible system of the water molecule. The improved energy estimate in turn results in a commensurate level of savings of quantum resources, such as the number of qubits and quantum gates, required to be within a pre-specified tolerance from the known ground-state energy. We also explore a suite of generalized transformations of fermion to qubit operators and show that resource-requirement savings of up to more than $20%$, in small instances, is possible.
Variational quantum eigensolver (VQE) emerged as a first practical algorithm for near-term quantum computers. Its success largely relies on the chosen variational ansatz, corresponding to a quantum circuit that prepares an approximate ground state of a Hamiltonian. Typically, it either aims to achieve high representation accuracy (at the expense of circuit depth), or uses a shallow circuit sacrificing the convergence to the exact ground state energy. Here, we propose the approach which can combine both low depth and improved precision, capitalizing on a genetically-improved ansatz for hardware-efficient VQE. Our solution, the multiobjective genetic variational quantum eigensolver (MoG-VQE), relies on multiobjective Pareto optimization, where topology of the variational ansatz is optimized using the non-dominated sorting genetic algorithm (NSGA-II). For each circuit topology, we optimize angles of single-qubit rotations using covariance matrix adaptation evolution strategy (CMA-ES) -- a derivative-free approach known to perform well for noisy black-box optimization. Our protocol allows preparing circuits that simultaneously offer high performance in terms of obtained energy precision and the number of two-qubit gates, thus trying to reach Pareto-optimal solutions. Tested for various molecules (H$_2$, H$_4$, H$_6$, BeH$_2$, LiH), we observe nearly ten-fold reduction in the two-qubit gate counts as compared to the standard hardware-efficient ansatz. For 12-qubit LiH Hamiltonian this allows reaching chemical precision already at 12 CNOTs. Consequently, the algorithm shall lead to significant growth of the ground state fidelity for near-term devices.
102 - Mazhar Ali 2019
Local quantum uncertainty captures purely quantum correlations excluding their classical counterpart. This measure is quantum discord type, however with the advantage that there is no need to carry out the complicated optimization procedure over measurements. This measure is initially defined for bipartite quantum systems and a closed formula exists only for $2 otimes d$ systems. We extend the idea of local quantum uncertainty to multi-qubit systems and provide the similar closed formula to compute this measure. We explicitly calculate local quantum uncertainty for various quantum states of three and four qubits, like GHZ state, W state, Dicke state, Cluster state, Singlet state, and Chi state all mixed with white noise. We compute this measure for some other well known three qubit quantum states as well. We show that for all such symmetric states, it is sufficient to apply measurements on any single qubit to compute this measure, whereas in general one has to apply measurements on all parties as local quantum uncertainties for each bipartition can be different for an arbitrary quantum state.
We study the behavior of the mutual information (MI) in various quadratic fermionic chains, with and without pairing terms and both with short- and long-range hoppings. The models considered include the short-range Kitaev model and also cases in which the area law for the entanglement entropy is - logarithmically or non-logarithmically - violated. When the area law is violated at most logarithmically, the MI is a monotonically increasing function of the conformal four-point ratio x, also for the Kitaev model. Where non-logarithmic violations of the area law are present, then non-monotonic features of MI can be observed, with a structure of peaks related to the spatial configuration of Bell pairs, and the four-point ratio x is found to be not sufficient to capture the whole structure of the MI. For the model exhibiting perfect volume law, the MI vanishes identically. For the Kitaev model, when it is gapped or the range of the pairing is large enough, then the results have vanishing MI for small x. A discussion of the comparison with the results obtained by the AdS/CFT correspondence in the strong coupling limit is presented.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا