Do you want to publish a course? Click here

Survey on reinforcement learning for language processing

90   0   0.0 ( 0 )
 Added by Victor Uc-Cetina
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

In recent years some researchers have explored the use of reinforcement learning (RL) algorithms as key components in the solution of various natural language processing tasks. For instance, some of these algorithms leveraging deep neural learning have found their way into conversational systems. This paper reviews the state of the art of RL methods for their possible use for different problems of natural language processing, focusing primarily on conversational systems, mainly due to their growing relevance. We provide detailed descriptions of the problems as well as discussions of why RL is well-suited to solve them. Also, we analyze the advantages and limitations of these methods. Finally, we elaborate on promising research directions in natural language processing that might benefit from reinforcement learning.



rate research

Read More

140 - Ming Liu , Stella Ho , Mengqi Wang 2021
Federated Learning aims to learn machine learning models from multiple decentralized edge devices (e.g. mobiles) or servers without sacrificing local data privacy. Recent Natural Language Processing techniques rely on deep learning and large pre-trained language models. However, both big deep neural and language models are trained with huge amounts of data which often lies on the server side. Since text data is widely originated from end users, in this work, we look into recent NLP models and techniques which use federated learning as the learning framework. Our survey discusses major challenges in federated natural language processing, including the algorithm challenges, system challenges as well as the privacy issues. We also provide a critical review of the existing Federated NLP evaluation methods and tools. Finally, we highlight the current research gaps and future directions.
Increasing concerns and regulations about data privacy, necessitate the study of privacy-preserving methods for natural language processing (NLP) applications. Federated learning (FL) provides promising methods for a large number of clients (i.e., personal devices or organizations) to collaboratively learn a shared global model to benefit all clients, while allowing users to keep their data locally. To facilitate FL research in NLP, we present the FedNLP, a research platform for federated learning in NLP. FedNLP supports various popular task formulations in NLP such as text classification, sequence tagging, question answering, seq2seq generation, and language modeling. We also implement an interface between Transformer language models (e.g., BERT) and FL methods (e.g., FedAvg, FedOpt, etc.) for distributed training. The evaluation protocol of this interface supports a comprehensive collection of non-IID partitioning strategies. Our preliminary experiments with FedNLP reveal that there exists a large performance gap between learning on decentralized and centralized datasets -- opening intriguing and exciting future research directions aimed at developing FL methods suited to NLP tasks.
Recent advances in reinforcement learning have shown its potential to tackle complex real-life tasks. However, as the dimensionality of the task increases, reinforcement learning methods tend to struggle. To overcome this, we explore methods for representing the semantic information embedded in the state. While previous methods focused on information in its raw form (e.g., raw visual input), we propose to represent the state using natural language. Language can represent complex scenarios and concepts, making it a favorable candidate for representation. Empirical evidence, within the domain of ViZDoom, suggests that natural language based agents are more robust, converge faster and perform better than vision based agents, showing the benefit of using natural language representations for reinforcement learning.
Natural Language Inference (NLI), also known as Recognizing Textual Entailment (RTE), is one of the most important problems in natural language processing. It requires to infer the logical relationship between two given sentences. While current approaches mostly focus on the interaction architectures of the sentences, in this paper, we propose to transfer knowledge from some important discourse markers to augment the quality of the NLI model. We observe that people usually use some discourse markers such as so or but to represent the logical relationship between two sentences. These words potentially have deep connections with the meanings of the sentences, thus can be utilized to help improve the representations of them. Moreover, we use reinforcement learning to optimize a new objective function with a reward defined by the property of the NLI datasets to make full use of the labels information. Experiments show that our method achieves the state-of-the-art performance on several large-scale datasets.
As the use of deep learning techniques has grown across various fields over the past decade, complaints about the opaqueness of the black-box models have increased, resulting in an increased focus on transparency in deep learning models. This work investigates various methods to improve the interpretability of deep neural networks for natural language processing (NLP) tasks, including machine translation and sentiment analysis. We provide a comprehensive discussion on the definition of the term textit{interpretability} and its various aspects at the beginning of this work. The methods collected and summarised in this survey are only associated with local interpretation and are divided into three categories: 1) explaining the models predictions through related input features; 2) explaining through natural language explanation; 3) probing the hidden states of models and word representations.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا