Do you want to publish a course? Click here

Discourse Marker Augmented Network with Reinforcement Learning for Natural Language Inference

73   0   0.0 ( 0 )
 Added by Boyuan Pan
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

Natural Language Inference (NLI), also known as Recognizing Textual Entailment (RTE), is one of the most important problems in natural language processing. It requires to infer the logical relationship between two given sentences. While current approaches mostly focus on the interaction architectures of the sentences, in this paper, we propose to transfer knowledge from some important discourse markers to augment the quality of the NLI model. We observe that people usually use some discourse markers such as so or but to represent the logical relationship between two sentences. These words potentially have deep connections with the meanings of the sentences, thus can be utilized to help improve the representations of them. Moreover, we use reinforcement learning to optimize a new objective function with a reward defined by the property of the NLI datasets to make full use of the labels information. Experiments show that our method achieves the state-of-the-art performance on several large-scale datasets.



rate research

Read More

Recent advances in reinforcement learning have shown its potential to tackle complex real-life tasks. However, as the dimensionality of the task increases, reinforcement learning methods tend to struggle. To overcome this, we explore methods for representing the semantic information embedded in the state. While previous methods focused on information in its raw form (e.g., raw visual input), we propose to represent the state using natural language. Language can represent complex scenarios and concepts, making it a favorable candidate for representation. Empirical evidence, within the domain of ViZDoom, suggests that natural language based agents are more robust, converge faster and perform better than vision based agents, showing the benefit of using natural language representations for reinforcement learning.
While recent research on natural language inference has considerably benefited from large annotated datasets, the amount of inference-related knowledge (including commonsense) provided in the annotated data is still rather limited. There have been two lines of approaches that can be used to further address the limitation: (1) unsupervised pretraining can leverage knowledge in much larger unstructured text data; (2) structured (often human-curated) knowledge has started to be considered in neural-network-based models for NLI. An immediate question is whether these two approaches complement each other, or how to develop models that can bring together their advantages. In this paper, we propose models that leverage structured knowledge in different components of pre-trained models. Our results show that the proposed models perform better than previous BERT-based state-of-the-art models. Although our models are proposed for NLI, they can be easily extended to other sentence or sentence-pair classification problems.
Natural Language Inference (NLI) is a fundamental and challenging task in Natural Language Processing (NLP). Most existing methods only apply one-pass inference process on a mixed matching feature, which is a concatenation of different matching features between a premise and a hypothesis. In this paper, we propose a new model called Multi-turn Inference Matching Network (MIMN) to perform multi-turn inference on different matching features. In each turn, the model focuses on one particular matching feature instead of the mixed matching feature. To enhance the interaction between different matching features, a memory component is employed to store the history inference information. The inference of each turn is performed on the current matching feature and the memory. We conduct experiments on three different NLI datasets. The experimental results show that our model outperforms or achieves the state-of-the-art performance on all the three datasets.
In recent years some researchers have explored the use of reinforcement learning (RL) algorithms as key components in the solution of various natural language processing tasks. For instance, some of these algorithms leveraging deep neural learning have found their way into conversational systems. This paper reviews the state of the art of RL methods for their possible use for different problems of natural language processing, focusing primarily on conversational systems, mainly due to their growing relevance. We provide detailed descriptions of the problems as well as discussions of why RL is well-suited to solve them. Also, we analyze the advantages and limitations of these methods. Finally, we elaborate on promising research directions in natural language processing that might benefit from reinforcement learning.
Structured sentences are important expressions in human writings and dialogues. Previous works on neural text generation fused semantic and structural information by encoding the entire sentence into a mixed hidden representation. However, when a generated sentence becomes complicated, the structure is difficult to be properly maintained. To alleviate this problem, we explicitly separate the modeling process of semantic and structural information. Intuitively, humans generate structured sentences by directly connecting discourses with discourse markers (such as and, but, etc.). Therefore, we propose a task that mimics this process, called discourse transfer. This task represents a structured sentence as (head discourse, discourse marker, tail discourse), and aims at tail discourse generation based on head discourse and discourse marker. We also propose a corresponding model called TransSent, which interprets the relationship between two discourses as a translation1 from the head discourse to the tail discourse in the embedding space. We experiment TransSent not only in discourse transfer task but also in free text generation and dialogue generation tasks. Automatic and human evaluation results show that TransSent can generate structured sentences with high quality, and has certain scalability in different tasks.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا