Do you want to publish a course? Click here

Higher-order percolation processes on multiplex hypergraphs

163   0   0.0 ( 0 )
 Added by Hanlin Sun
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

Higher order interactions are increasingly recognised as a fundamental aspect of complex systems ranging from the brain to social contact networks. Hypergraph as well as simplicial complexes capture the higher-order interactions of complex systems and allow to investigate the relation between their higher-order structure and their function. Here we establish a general framework for assessing hypergraph robustness and we characterize the critical properties of simple and higher-order percolation processes. This general framework builds on the formulation of the random multiplex hypergraph ensemble where each layer is characterized by hyperedges of given cardinality. We reveal the relation between higher-order percolation processes in random multiplex hypergraphs, interdependent percolation of multiplex networks and K-core percolation. The structural correlations of the random multiplex hypergraphs are shown to have a significant effect on their percolation properties. The wide range of critical behaviors observed for higher-order percolation processes on multiplex hypergraphs elucidates the mechanisms responsible for the emergence of discontinuous transition and uncovers interesting critical properties which can be applied to the study of epidemic spreading and contagion processes on higher-order networks.



rate research

Read More

Many real-world complex systems are best modeled by multiplex networks. The multiplexity has proved to have broad impact on the systems structure and function. Most theoretical studies on multiplex networks to date, however, have largely ignored the effect of link overlap across layers despite strong empirical evidences for its significance. In this article, we investigate the effect of link overlap in the viability of multiplex networks, both analytically and numerically. Distinctive role of overlapping links in viability and mutual connectivity is emphasized and exploited for setting up proper analytic framework. A rich phase diagram for viability is obtained and greatly diversified patterns of hysteretic behavior in viability are observed in the presence of link overlap. Mutual percolation with link overlap is revisited as a limit of multiplex viability problem, and controversy between existing results is clarified. The distinctive role of overlapping links is further demonstrated by the different responses of networks under random removals of overlapping and non-overlapping links, respectively, as well as under several removal strategies. Our results show that the link overlap strongly facilitates viability and mutual percolation; at the same time, the presence of link overlap poses challenge in analytical approach to the problem.
158 - Kyu-Min Lee , K.-I. Goh , 2011
We introduce the sandpile model on multiplex networks with more than one type of edge and investigate its scaling and dynamical behaviors. We find that the introduction of multiplexity does not alter the scaling behavior of avalanche dynamics; the system is critical with an asymptotic power-law avalanche size distribution with an exponent $tau = 3/2$ on duplex random networks. The detailed cascade dynamics, however, is affected by the multiplex coupling. For example, higher-degree nodes such as hubs in scale-free networks fail more often in the multiplex dynamics than in the simplex network counterpart in which different types of edges are simply aggregated. Our results suggest that multiplex modeling would be necessary in order to gain a better understanding of cascading failure phenomena of real-world multiplex complex systems, such as the global economic crisis.
We present a model that takes into account the coupling between evolutionary game dynamics and social influence. Importantly, social influence and game dynamics take place in different domains, which we model as different layers of a multiplex network. We show that the coupling between these dynamical processes can lead to cooperation in scenarios where the pure game dynamics predicts defection. In addition, we show that the structure of the network layers and the relation between them can further increase cooperation. Remarkably, if the layers are related in a certain way, the system can reach a polarized metastable state.These findings could explain the prevalence of polarization observed in many social dilemmas.
We show that real multiplex networks are unexpectedly robust against targeted attacks on high degree nodes, and that hidden interlayer geometric correlations predict this robustness. Without geometric correlations, multiplexes exhibit an abrupt breakdown of mutual connectivity, even with interlayer degree correlations. With geometric correlations, we instead observe a multistep cascading process leading into a continuous transition, which apparently becomes fully continuous in the thermodynamic limit. Our results are important for the design of efficient protection strategies and of robust interacting networks in many domains.
The whole frame of interconnections in complex networks hinges on a specific set of structural nodes, much smaller than the total size, which, if activated, would cause the spread of information to the whole network [1]; or, if immunized, would prevent the diffusion of a large scale epidemic [2,3]. Localizing this optimal, i.e. minimal, set of structural nodes, called influencers, is one of the most important problems in network science [4,5]. Despite the vast use of heuristic strategies to identify influential spreaders [6-14], the problem remains unsolved. Here, we map the problem onto optimal percolation in random networks to identify the minimal set of influencers, which arises by minimizing the energy of a many-body system, where the form of the interactions is fixed by the non-backtracking matrix [15] of the network. Big data analyses reveal that the set of optimal influencers is much smaller than the one predicted by previous heuristic centralities. Remarkably, a large number of previously neglected weakly-connected nodes emerges among the optimal influencers. These are topologically tagged as low-degree nodes surrounded by hierarchical coronas of hubs, and are uncovered only through the optimal collective interplay of all the influencers in the network. Eventually, the present theoretical framework may hold a larger degree of universality, being applicable to other hard optimization problems exhibiting a continuous transition from a known phase [16].
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا