Do you want to publish a course? Click here

Rotated Odometers and Actions on Rooted Trees

172   0   0.0 ( 0 )
 Added by Olga Lukina
 Publication date 2021
  fields
and research's language is English




Ask ChatGPT about the research

A rotated odometer is an infinite interval exchange transformation (IET) obtained as a composition of the von Neumann-Kakutani map and a finite IET of intervals of equal length. In this paper, we consider rotated odometers for which the finite IET is of intervals of length $2^{-N}$, for some $N geq 1$. We show that every such system is measurably isomorphic to a $mathbb{Z}$-action on a rooted tree, and that the unique minimal aperiodic subsystem of this action is always measurably isomorphic to the action of the adding machine. We discuss the applications of this work to the study of group actions on binary trees.



rate research

Read More

154 - Henk Bruin , Olga Lukina 2021
We describe the infinite interval exchange transformations obtained as a composition of a finite interval exchange transformation and the von Neumann-Kakutani map, called the rotated odometers. We show that with respect to Lebesgue measure on the unit interval, every such transformation is measurably isomorphic to the first return map of a rational parallel flow on a translation surface of finite area with infinite genus and a finite number of ends. We describe the dynamics of rotated odometers by means of Bratteli-Vershik systems, and derive several of their topological and ergodic properties. In particular, we show that every rotated odometer has a unique minimal subsystem, and that there exist rotated odometers whose minimal subsystem does not factor onto the dyadic odometer.
Neuronal morphology is an essential element for brain activity and function. We take advantage of current availability of brain-wide neuron digital reconstructions of the Pyramidal cells from a mouse brain, and analyze several emergent features of brain-wide neuronal morphology. We observe that axonal trees are self-affine while dendritic trees are self-similar. We also show that tree size appear to be random, independent of the number of dendrites within single neurons. Moreover, we consider inhomogeneous branching model which stochastically generates rooted 3-Cayley trees for the brain-wide neuron topology. Based on estimated order-dependent branching probability from actual axonal and dendritic trees, our inhomogeneous model quantitatively captures a number of topological features including size and shape of both axons and dendrites. This sheds lights on a universal mechanism behind the topological formation of brain-wide axonal and dendritic trees.
We find a formula to compute the number of the generators, which generate the $n$-filtered space of Hopf algebra of rooted trees, i.e. the number of equivalent classes of rooted trees with weight $n$. Applying Hopf algebra of rooted trees, we show that the analogue of Andruskiewitsch and Schneiders Conjecture is not true. The Hopf algebra of rooted trees and the enveloping algebra of the Lie algebra of rooted trees are two important examples of Hopf algebras. We give their representation and show that they have not any nonzero integrals. We structure their graded Drinfeld doubles and show that they are local quasitriangular Hopf algebras.
We introduce some natural families of distributions on rooted binary ranked plane trees with a view toward unifying ideas from various fields, including macroevolution, epidemiology, computational group theory, search algorithms and other fields. In the process we introduce the notions of split-exchangeability and plane-invariance of a general Markov splitting model in order to readily obtain probabilities over various equivalence classes of trees that arise in statistics, phylogenetics, epidemiology and group theory.
We address questions of logic and expressibility in the context of random rooted trees. Infiniteness of a rooted tree is not expressible as a first order sentence, but is expressible as an existential monadic second order sentence (EMSO). On the other hand, finiteness is not expressible as an EMSO. For a broad class of random tree models, including Galton-Watson trees with offspring distributions that have full support, we prove the stronger statement that finiteness does not agree up to a null set with any EMSO. We construct a finite tree and a non-null set of infinite trees that cannot be distinguished from each other by any EMSO of given parameters. This is proved via set-pebble Ehrenfeucht games (where an initial colouring round is followed by a given number of pebble rounds).
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا