Do you want to publish a course? Click here

Machine Translation Decoding beyond Beam Search

144   0   0.0 ( 0 )
 Added by R\\'emi Leblond
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Beam search is the go-to method for decoding auto-regressive machine translation models. While it yields consistent improvements in terms of BLEU, it is only concerned with finding outputs with high model likelihood, and is thus agnostic to whatever end metric or score practitioners care about. Our aim is to establish whether beam search can be replaced by a more powerful metric-driven search technique. To this end, we explore numerous decoding algorithms, including some which rely on a value function parameterised by a neural network, and report results on a variety of metrics. Notably, we introduce a Monte-Carlo Tree Search (MCTS) based method and showcase its competitiveness. We provide a blueprint for how to use MCTS fruitfully in language applications, which opens promising future directions. We find that which algorithm is best heavily depends on the characteristics of the goal metric; we believe that our extensive experiments and analysis will inform further research in this area.



rate research

Read More

Existing work in translation demonstrated the potential of massively multilingual machine translation by training a single model able to translate between any pair of languages. However, much of this work is English-Centric by training only on data which was translated from or to English. While this is supported by large sources of training data, it does not reflect translation needs worldwide. In this work, we create a true Many-to-Many multilingual translation model that can translate directly between any pair of 100 languages. We build and open source a training dataset that covers thousands of language directions with supervised data, created through large-scale mining. Then, we explore how to effectively increase model capacity through a combination of dense scaling and language-specific sparse parameters to create high quality models. Our focus on non-English-Centric models brings gains of more than 10 BLEU when directly translating between non-English directions while performing competitively to the best single systems of WMT. We open-source our scripts so that others may reproduce the data, evaluation, and final M2M-100 model.
Diverse machine translation aims at generating various target language translations for a given source language sentence. Leveraging the linear relationship in the sentence latent space introduced by the mixup training, we propose a novel method, MixDiversity, to generate different translations for the input sentence by linearly interpolating it with different sentence pairs sampled from the training corpus when decoding. To further improve the faithfulness and diversity of the translations, we propose two simple but effective approaches to select diverse sentence pairs in the training corpus and adjust the interpolation weight for each pair correspondingly. Moreover, by controlling the interpolation weight, our method can achieve the trade-off between faithfulness and diversity without any additional training, which is required in most of the previous methods. Experiments on WMT16 en-ro, WMT14 en-de, and WMT17 zh-en are conducted to show that our method substantially outperforms all previous diverse machine translation methods.
Scheduled sampling is widely used to mitigate the exposure bias problem for neural machine translation. Its core motivation is to simulate the inference scene during training by replacing ground-truth tokens with predicted tokens, thus bridging the gap between training and inference. However, vanilla scheduled sampling is merely based on training steps and equally treats all decoding steps. Namely, it simulates an inference scene with uniform error rates, which disobeys the real inference scene, where larger decoding steps usually have higher error rates due to error accumulations. To alleviate the above discrepancy, we propose scheduled sampling methods based on decoding steps, increasing the selection chance of predicted tokens with the growth of decoding steps. Consequently, we can more realistically simulate the inference scene during training, thus better bridging the gap between training and inference. Moreover, we investigate scheduled sampling based on both training steps and decoding steps for further improvements. Experimentally, our approaches significantly outperform the Transformer baseline and vanilla scheduled sampling on three large-scale WMT tasks. Additionally, our approaches also generalize well to the text summarization task on two popular benchmarks.
137 - Xu Tan , Yingce Xia , Lijun Wu 2019
The encoder-decoder based neural machine translation usually generates a target sequence token by token from left to right. Due to error propagation, the tokens in the right side of the generated sequence are usually of poorer quality than those in the left side. In this paper, we propose an efficient method to generate a sequence in both left-to-right and right-to-left manners using a single encoder and decoder, combining the advantages of both generation directions. Experiments on three translation tasks show that our method achieves significant improvements over conventional unidirectional approach. Compared with ensemble methods that train and combine two models with different generation directions, our method saves 50% model parameters and about 40% training time, and also improve inference speed.
268 - Ankush Garg , Yuan Cao , 2020
We present neural machine translation (NMT) models inspired by echo state network (ESN), named Echo State NMT (ESNMT), in which the encoder and decoder layer weights are randomly generated then fixed throughout training. We show that even with this extremely simple model construction and training procedure, ESNMT can already reach 70-80% quality of fully trainable baselines. We examine how spectral radius of the reservoir, a key quantity that characterizes the model, determines the model behavior. Our findings indicate that randomized networks can work well even for complicated sequence-to-sequence prediction NLP tasks.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا