Do you want to publish a course? Click here

Echo State Neural Machine Translation

269   0   0.0 ( 0 )
 Added by Ankush Garg
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

We present neural machine translation (NMT) models inspired by echo state network (ESN), named Echo State NMT (ESNMT), in which the encoder and decoder layer weights are randomly generated then fixed throughout training. We show that even with this extremely simple model construction and training procedure, ESNMT can already reach 70-80% quality of fully trainable baselines. We examine how spectral radius of the reservoir, a key quantity that characterizes the model, determines the model behavior. Our findings indicate that randomized networks can work well even for complicated sequence-to-sequence prediction NLP tasks.



rate research

Read More

Neural Machine Translation (NMT) is a new approach to machine translation that has shown promising results that are comparable to traditional approaches. A significant weakness in conventional NMT systems is their inability to correctly translate very rare words: end-to-end NMTs tend to have relatively small vocabularies with a single unk symbol that represents every possible out-of-vocabulary (OOV) word. In this paper, we propose and implement an effective technique to address this problem. We train an NMT system on data that is augmented by the output of a word alignment algorithm, allowing the NMT system to emit, for each OOV word in the target sentence, the position of its corresponding word in the source sentence. This information is later utilized in a post-processing step that translates every OOV word using a dictionary. Our experiments on the WMT14 English to French translation task show that this method provides a substantial improvement of up to 2.8 BLEU points over an equivalent NMT system that does not use this technique. With 37.5 BLEU points, our NMT system is the first to surpass the best result achieved on a WMT14 contest task.
137 - Xu Tan , Yingce Xia , Lijun Wu 2019
The encoder-decoder based neural machine translation usually generates a target sequence token by token from left to right. Due to error propagation, the tokens in the right side of the generated sequence are usually of poorer quality than those in the left side. In this paper, we propose an efficient method to generate a sequence in both left-to-right and right-to-left manners using a single encoder and decoder, combining the advantages of both generation directions. Experiments on three translation tasks show that our method achieves significant improvements over conventional unidirectional approach. Compared with ensemble methods that train and combine two models with different generation directions, our method saves 50% model parameters and about 40% training time, and also improve inference speed.
We describe an open-source toolkit for neural machine translation (NMT). The toolkit prioritizes efficiency, modularity, and extensibility with the goal of supporting NMT research into model architectures, feature representations, and source modalities, while maintaining competitive performance and reasonable training requirements. The toolkit consists of modeling and translation support, as well as detailed pedagogical documentation about the underlying techniques.
We investigate two specific manifestations of compositionality in Neural Machine Translation (NMT) : (1) Productivity - the ability of the model to extend its predictions beyond the observed length in training data and (2) Systematicity - the ability of the model to systematically recombine known parts and rules. We evaluate a standard Sequence to Sequence model on tests designed to assess these two properties in NMT. We quantitatively demonstrate that inadequate temporal processing, in the form of poor encoder representations is a bottleneck for both Productivity and Systematicity. We propose a simple pre-training mechanism which alleviates model performance on the two properties and leads to a significant improvement in BLEU scores.
In Transformer-based neural machine translation (NMT), the positional encoding mechanism helps the self-attention networks to learn the source representation with order dependency, which makes the Transformer-based NMT achieve state-of-the-art results for various translation tasks. However, Transformer-based NMT only adds representations of positions sequentially to word vectors in the input sentence and does not explicitly consider reordering information in this sentence. In this paper, we first empirically investigate the relationship between source reordering information and translation performance. The empirical findings show that the source input with the target order learned from the bilingual parallel dataset can substantially improve translation performance. Thus, we propose a novel reordering method to explicitly model this reordering information for the Transformer-based NMT. The empirical results on the WMT14 English-to-German, WAT ASPEC Japanese-to-English, and WMT17 Chinese-to-English translation tasks show the effectiveness of the proposed approach.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا