Do you want to publish a course? Click here

Multipoint correlation functions at phase separation. Exact results from field theory

134   0   0.0 ( 0 )
 Added by Alessio Squarcini
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

We consider near-critical two-dimensional statistical systems with boundary conditions inducing phase separation on the strip. By exploiting low-energy properties of two-dimensional field theories, we compute arbitrary $n$-point correlation of the order parameter field. Finite-size corrections and mixed correlations involving the stress tensor trace are also discussed. As an explicit illustration of the technique, we provide a closed-form expression for a three-point correlation function and illustrate the explicit form of the long-ranged interfacial fluctuations as well as their confinement within the interfacial region.



rate research

Read More

We compute general higher-point functions in the sector of large charge operators $phi^n$, $barphi^n$ at large charge in $O(2)$ $(bar phiphi)^2$ theory. We find that there is a special class of extremal correlators having only one insertion of $bar phi^n$ that have a remarkably simple form in the double-scaling limit $nto infty $ at fixed $g,n^2equiv lambda$, where $gsimepsilon $ is the coupling at the $O(2)$ Wilson-Fisher fixed point in $4-epsilon$ dimensions. In this limit, also non-extremal correlators can be computed. As an example, we give the complete formula for $ langle phi(x_1)^{n},phi(x_2)^{n},bar{phi}(x_3)^{n},bar{phi}(x_4)^{n}rangle$, which reveals an interesting structure.
68 - G. Mussardo , V. Riva , G. Sotkov 2005
We determine the semiclassical energy levels for the phi^4 field theory in the broken symmetry phase on a 2D cylindrical geometry with antiperiodic boundary conditions by quantizing the appropriate finite--volume kink solutions. The analytic form of the kink scaling functions for arbitrary size of the system allows us to describe the flow between the twisted sector of c=1 CFT in the UV region and the massive particles in the IR limit. Kink-creating operators are shown to correspond in the UV limit to disorder fields of the c=1 CFT. The problem of the finite--volume spectrum for generic 2D Landau--Ginzburg models is also discussed.
We derive exact analytic results for several four-point correlation functions for statistical models exhibiting phase separation in two-dimensions. Our theoretical results are then specialized to the Ising model on the two-dimensional strip and found to be in excellent agreement with high-precision Monte Carlo simulations.
We derive the general exact forms of the Wigner function, of mean values of conserved currents, of the spin density matrix, of the spin polarization vector and of the distribution function of massless particles for the free Dirac field at global thermodynamic equilibrium with rotation and acceleration, extending our previous results obtained for the scalar field. The solutions are obtained by means of an iterative method and analytic continuation, which leads to formal series in thermal vorticity. In order to obtain finite values, we extend to the fermionic case the method of analytic distillation introduced for bosonic series. The obtained mean values of the stress-energy tensor, vector and axial currents for the massless Dirac field are in agreement with known analytic results in the special cases of pure acceleration and pure rotation. By using this approach, we obtain new expressions of the currents for the more general case of combined rotation and acceleration and, in the pure acceleration case, we demonstrate that they must vanish at the Unruh temperature.
We derive a general exact form of the phase space distribution function and the thermal expectation values of local operators for the free quantum scalar field at equilibrium with rotation and acceleration in flat space-time without solving field equations in curvilinear coordinates. After factorizing the density operator with group theoretical methods, we obtain the exact form of the phase space distribution function as a formal series in thermal vorticity through an iterative method and we calculate thermal expectation values by means of analytic continuation techniques. We separately discuss the cases of pure rotation and pure acceleration and derive analytic results for the stress-energy tensor of the massless field. The expressions found agree with the exact analytic solutions obtained by solving the field equation in suitable curvilinear coordinates for the two cases at stake and already - or implicitly - known in literature. In order to extract finite values for the pure acceleration case we introduce the concept of analytic distillation of a complex function. For the massless field, the obtained expressions of the currents are polynomials in the acceleration/temperature ratios which vanish at $2pi$, in full accordance with the Unruh effect.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا