No Arabic abstract
As more and more face-to-face classes move to online environments, it becomes increasingly important to explore any emerging barriers to students learning. This work focuses on characterizing student barriers to active learning in synchronous online environments. The aim is to help novice educators develop a better understanding of those barriers and prepare more student-centered course plans for their active online classes. Towards this end, we adopt a qualitative research approach and study information from different sources: social media content, interviews, and surveys from students and expert educators. Through a thematic analysis, we craft a nuanced list of students online active learning barriers within the themes of human-side, technological, and environmental barriers. Each barrier is explored from the three aspects of frequency, importance, and exclusiveness to active online classes. Finally, we conduct a summative study with 12 novice educators and explain the benefits of using our barrier list for course planning in active online classes.
Algorithmic systems---from rule-based bots to machine learning classifiers---have a long history of supporting the essential work of content moderation and other curation work in peer production projects. From counter-vandalism to task routing, basic machine prediction has allowed open knowledge projects like Wikipedia to scale to the largest encyclopedia in the world, while maintaining quality and consistency. However, conversations about how quality control should work and what role algorithms should play have generally been led by the expert engineers who have the skills and resources to develop and modify these complex algorithmic systems. In this paper, we describe ORES: an algorithmic scoring service that supports real-time scoring of wiki edits using multiple independent classifiers trained on different datasets. ORES decouples several activities that have typically all been performed by engineers: choosing or curating training data, building models to serve predictions, auditing predictions, and developing interfaces or automated agents that act on those predictions. This meta-algorithmic system was designed to open up socio-technical conversations about algorithms in Wikipedia to a broader set of participants. In this paper, we discuss the theoretical mechanisms of social change ORES enables and detail case studies in participatory machine learning around ORES from the 5 years since its deployment.
Rust is a low-level programming language known for its unique approach to memory-safe systems programming and for its steep learning curve. To understand what makes Rust difficult to adopt, we surveyed the top Reddit and Hacker News posts and comments about Rust; from these online discussions, we identified three hypotheses about Rusts barriers to adoption. We found that certain key features, idioms, and integration patterns were not easily accessible to new users.
Users can be supported to adopt healthy behaviors, such as regular physical activity, via relevant and timely suggestions on their mobile devices. Recently, reinforcement learning algorithms have been found to be effective for learning the optimal context under which to provide suggestions. However, these algorithms are not necessarily designed for the constraints posed by mobile health (mHealth) settings, that they be efficient, domain-informed and computationally affordable. We propose an algorithm for providing physical activity suggestions in mHealth settings. Using domain-science, we formulate a contextual bandit algorithm which makes use of a linear mixed effects model. We then introduce a procedure to efficiently perform hyper-parameter updating, using far less computational resources than competing approaches. Not only is our approach computationally efficient, it is also easily implemented with closed form matrix algebraic updates and we show improvements over state of the art approaches both in speed and accuracy of up to 99% and 56% respectively.
Online health communities offer the promise of support benefits to users, in particular because these communities enable users to find peers with similar experiences. Building mutually supportive connections between peers is a key motivation for using online health communities. However, a users role in a community may influence the formation of peer connections. In this work, we study patterns of peer connections between two structural health roles: patient and non-professional caregiver. We examine user behavior in an online health community where finding peers is not explicitly supported. This context lets us use social network analysis methods to explore the growth of such connections in the wild and identify users peer communication preferences. We investigated how connections between peers were initiated, finding that initiations are more likely between two authors who have the same role and who are close within the broader communication network. Relationships are also more likely to form and be more interactive when authors have the same role. Our results have implications for the design of systems supporting peer communication, e.g. peer-to-peer recommendation systems.
Sleep is critical to human function, mediating factors like memory, mood, energy, and alertness; therefore, it is commonly conjectured that a good nights sleep is important for job performance. However, both real-world sleep behavior and job performance are hard to measure at scale. In this work, we show that peoples everyday interactions with online mobile apps can reveal insights into their job performance in real-world contexts. We present an observational study in which we objectively tracked the sleep behavior and job performance of salespeople (N = 15) and athletes (N = 19) for 18 months, using a mattress sensor and online mobile app. We first demonstrate that cumulative sleep measures are correlated with job performance metrics, showing that an hour of daily sleep loss for a week was associated with a 9.0% and 9.5% reduction in performance of salespeople and athletes, respectively. We then examine the utility of online app interaction time as a passively collectible and scalable performance indicator. We show that app interaction time is correlated with the performance of the athletes, but not the salespeople. To support that our app-based performance indicator captures meaningful variation in psychomotor function and is robust against potential confounds, we conducted a second study to evaluate the relationship between sleep behavior and app interaction time in a cohort of 274 participants. Using a generalized additive model to control for per-participant random effects, we demonstrate that participants who lost one hour of daily sleep for a week exhibited 5.0% slower app interaction times. We also find that app interaction time exhibits meaningful chronobiologically consistent correlations with sleep history, time awake, and circadian rhythms. Our findings reveal an opportunity for online app developers to generate new insights regarding cognition and productivity.