Let $r(n,k)$ (resp. $s(n,k)$) be the number of Schroder paths (resp. little Schroder paths) of length $2n$ with $k$ hills, and set $r(0,0)=s(0,0)=1$. We bijectively establish the following recurrence relations: begin{align*} r(n,0)&=sumlimits_{j=0}^{n-1}2^{j}r(n-1,j), r(n,k)&=r(n-1,k-1)+sumlimits_{j=k}^{n-1}2^{j-k}r(n-1,j),quad 1le kle n, s(n,0) &=sumlimits_{j=1}^{n-1}2cdot3^{j-1}s(n-1,j), s(n,k) &=s(n-1,k-1)+sumlimits_{j=k+1}^{n-1}2cdot3^{j-k-1}s(n-1,j),quad 1le kle n. end{align*} The infinite lower triangular matrices $[r(n,k)]_{n,kge 0}$ and $[s(n,k)]_{n,kge 0}$, whose row sums produce the large and little Schroder numbers respectively, are two Riordan arrays of Bell type. Hence the above recurrences can also be deduced from their $A$- and $Z$-sequences characterizations. On the other hand, it is well-known that the large Schroder numbers also enumerate separable permutations. This propelled us to reveal the connection with a lesser-known permutation statistic, called initial ascending run, whose distribution on separable permutations is shown to be given by $[r(n,k)]_{n,kge 0}$ as well.
Let $G=(V(G), E(G))$ be a multigraph with maximum degree $Delta(G)$, chromatic index $chi(G)$ and total chromatic number $chi(G)$. The Total Coloring conjecture proposed by Behzad and Vizing, independently, states that $chi(G)leq Delta(G)+mu(G) +1$ for a multigraph $G$, where $mu(G)$ is the multiplicity of $G$. Moreover, Goldberg conjectured that $chi(G)=chi(G)$ if $chi(G)geq Delta(G)+3$ and noticed the conjecture holds when $G$ is an edge-chromatic critical graph. By assuming the Goldberg-Seymour conjecture, we show that $chi(G)=chi(G)$ if $chi(G)geq max{ Delta(G)+2, |V(G)|+1}$ in this note. Consequently, $chi(G) = chi(G)$ if $chi(G) ge Delta(G) +2$ and $G$ has a spanning edge-chromatic critical subgraph.
We study the generating function of descent numbers for the permutations with descent pairs of prescribed parities, the distribution of which turns out to be a refinement of median Genocchi numbers. We prove the $gamma$-positivity for the polynomial and derive the generating function for the $gamma$-vectors, expressed in the form of continued fraction. We also come up with an artificial statistic that gives a $q$-analogue of the $gamma$-positivity for the permutations with descents only allowed from an odd value to an odd value.
There is a bijection from Schroder paths to {4132, 4231}-avoiding permutations due to Bandlow, Egge, and Killpatrick that sends area to inversion number. Here we give a concise description of this bijection.
Karasev conjectured that for any set of $3k$ lines in general position in the plane, which is partitioned into $3$ color classes of equal size $k$, the set can be partitioned into $k$ colorful 3-subsets such that all the triangles formed by the subsets have a point in common. Although the general conjecture is false, we show that Karasevs conjecture is true for lines in convex position. We also discuss possible generalizations of this result.