No Arabic abstract
We review the Random Batch Methods (RBM) for interacting particle systems consisting of $N$-particles, with $N$ being large. The computational cost of such systems is of $O(N^2)$, which is prohibitively expensive. The RBM methods use small but random batches so the computational cost is reduced, per time step, to $O(N)$. In this article we discuss these methods for both classical and quantum systems, the corresponding theory, and applications from molecular dynamics, statistical samplings, to agent-based models for collective behavior, and quantum Monte-Carlo methods.
We develop Random Batch Methods for interacting particle systems with large number of particles. These methods use small but random batches for particle interactions, thus the computational cost is reduced from $O(N^2)$ per time step to $O(N)$, for a system with $N$ particles with binary interactions. On one hand, these methods are efficient Asymptotic-Preserving schemes for the underlying particle systems, allowing $N$-independent time steps and also capture, in the $N to infty$ limit, the solution of the mean field limit which are nonlinear Fokker-Planck equations; on the other hand, the stochastic processes generated by the algorithms can also be regarded as new models for the underlying problems. For one of the methods, we give a particle number independent error estimate under some special interactions. Then, we apply these methods to some representative problems in mathematics, physics, social and data sciences, including the Dyson Brownian motion from random matrix theory, Thomsons problem, distribution of wealth, opinion dynamics and clustering. Numerical results show that the methods can capture both the transient solutions and the global equilibrium in these problems.
We investigate several important issues regarding the Random Batch Method (RBM) for second order interacting particle systems. We first show the uniform-in-time strong convergence for second order systems under suitable contraction conditions. Secondly, we propose the application of RBM for singular interaction kernels via kernel splitting strategy, and investigate numerically the application to molecular dynamics.
The Random Batch Method proposed in our previous work [Jin et al., J. Comput. Phys., 400(1), 2020] is not only a numerical method for interacting particle systems and its mean-field limit, but also can be viewed as a model of particle system in which particles interact, at discrete time, with randomly selected mini-batch of particles. In this paper we investigate the mean-field limit of this model as the number of particles $N to infty$. Unlike the classical mean field limit for interacting particle systems where the law of large numbers plays the role and the chaos is propagated to later times, the mean field limit now does not rely on the law of large numbers and chaos is imposed at every discrete time. Despite this, we will not only justify this mean-field limit (discrete in time) but will also show that the limit, as the discrete time interval $tau to 0$, approaches to the solution of a nonlinear Fokker-Planck equation arising as the mean-field limit of the original interacting particle system in Wasserstein distance.
Generalized Additive Runge-Kutta schemes have shown to be a suitable tool for solving ordinary differential equations with additively partitioned right-hand sides. This work generalizes these GARK schemes to symplectic GARK schemes for additively partitioned Hamiltonian systems. In a general setting, we derive conditions for symplecticeness, as well as symmetry and time-reversibility. We show how symplectic and symmetric schemes can be constructed based on schemes which are only symplectic. Special attention is given to the special case of partitioned schemes for Hamiltonians split into multiple potential and kinetic energies. Finally we show how symplectic GARK schemes can use efficiently different time scales and evaluation costs for different potentials by using different order for these parts.
Random batch algorithms are constructed for quantum Monte Carlo simulations. The main objective is to alleviate the computational cost associated with the calculations of two-body interactions, including the pairwise interactions in the potential energy, and the two-body terms in the Jastrow factor. In the framework of variational Monte Carlo methods, the random batch algorithm is constructed based on the over-damped Langevin dynamics, so that updating the position of each particle in an $N$-particle system only requires $mathcal{O}(1)$ operations, thus for each time step the computational cost for $N$ particles is reduced from $mathcal{O}(N^2)$ to $mathcal{O}(N)$. For diffusion Monte Carlo methods, the random batch algorithm uses an energy decomposition to avoid the computation of the total energy in the branching step. The effectiveness of the random batch method is demonstrated using a system of liquid ${}^4$He atoms interacting with a graphite surface.