Do you want to publish a course? Click here

Symplectic GARK methods for Hamiltonian systems

101   0   0.0 ( 0 )
 Added by Michael G\\\"unther
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Generalized Additive Runge-Kutta schemes have shown to be a suitable tool for solving ordinary differential equations with additively partitioned right-hand sides. This work generalizes these GARK schemes to symplectic GARK schemes for additively partitioned Hamiltonian systems. In a general setting, we derive conditions for symplecticeness, as well as symmetry and time-reversibility. We show how symplectic and symmetric schemes can be constructed based on schemes which are only symplectic. Special attention is given to the special case of partitioned schemes for Hamiltonians split into multiple potential and kinetic energies. Finally we show how symplectic GARK schemes can use efficiently different time scales and evaluation costs for different potentials by using different order for these parts.



rate research

Read More

This work considers multirate generalized-structure additively partitioned Runge-Kutta (MrGARK) methods for solving stiff systems of ordinary differential equations (ODEs) with multiple time scales. These methods treat different partitions of the system with different timesteps for a more targeted and efficient solution compared to monolithic single rate approaches. With implicit methods used across all partitions, methods must find a balance between stability and the cost of solving nonlinear equations for the stages. In order to characterize this important trade-off, we explore multirate coupling strategies, problems for assessing linear stability, and techniques to efficiently implement Newton iterations for stage equations. Unlike much of the existing multirate stability analysis which is limited in scope to particular methods, we present general statements on stability and describe fundamental limitations for certain types of multirate schemes. New implicit multirate methods up to fourth order are derived, and their accuracy and efficiency properties are verified with numerical tests.
It is well-known that a numerical method which is at the same time geometric structure-preserving and physical property-preserving cannot exist in general for Hamiltonian partial differential equations. In this paper, we present a novel class of parametric multi-symplectic Runge-Kutta methods for Hamiltonian wave equations, which can also conserve energy simultaneously in a weaker sense with a suitable parameter. The existence of such a parameter, which enforces the energy-preserving property, is proved under certain assumptions on the fixed step sizes and the fixed initial condition. We compare the proposed method with the classical multi-symplectic Runge-Kutta method in numerical experiments, which shows the remarkable energy-preserving property of the proposed method and illustrate the validity of theoretical results.
We investigate the stochastic modified equation which plays an important role in the stochastic backward error analysis for explaining the mathematical mechanism of a numerical method. The contribution of this paper is threefold. First, we construct a new type of stochastic modified equation, which is a perturbation of the Wong--Zakai approximation of the rough differential equation. For a symplectic method applied to a rough Hamiltonian system, the associated stochastic modified equation is proved to have a Hamiltonian formulation. Second, the pathwise convergence order of the truncated modified equation to the numerical method is obtained by techniques in the rough path theory. Third, if increments of noises are simulated by truncated random variables, we show that the one-step error can be made exponentially small with respect to the time step size. Numerical experiments verify our theoretical results.
HNets is a class of neural networks on grounds of physical prior for learning Hamiltonian systems. This paper explains the influences of different integrators as hyper-parameters on the HNets through error analysis. If we define the network target as the map with zero empirical loss on arbitrary training data, then the non-symplectic integrators cannot guarantee the existence of the network targets of HNets. We introduce the inverse modified equations for HNets and prove that the HNets based on symplectic integrators possess network targets and the differences between the network targets and the original Hamiltonians depend on the accuracy orders of the integrators. Our numerical experiments show that the phase flows of the Hamiltonian systems obtained by symplectic HNets do not exactly preserve the original Hamiltonians, but preserve the network targets calculated; the loss of the network target for the training data and the test data is much less than the loss of the original Hamiltonian; the symplectic HNets have more powerful generalization ability and higher accuracy than the non-symplectic HNets in addressing predicting issues. Thus, the symplectic integrators are of critical importance for HNets.
Systems driven by multiple physical processes are central to many areas of science and engineering. Time discretization of multiphysics systems is challenging, since different processes have different levels of stiffness and characteristic time scales. The multimethod approach discretizes each physical process with an appropriate numerical method; the methods are coupled appropriately such that the overall solution has the desired accuracy and stability properties. The authors developed the general-structure additive Runge-Kutta (GARK) framework, which constructs multimethods based on Runge-Kutta schemes. This paper constructs the new GARK-ROS/GARK-ROW families of multimethods based on linearly implicit Rosenbrock/Rosenbrock-W schemes. For ordinary differential equation models, we develop a general order condition theory for linearly implicit methods with any number of partitions, using exact or approximate Jacobians. We generalize the order condition theory to two-way partitioned index-1 differential-algebraic equations. Applications of the framework include decoupled linearly implicit, linearly implicit/explicit, and linearly implicit/implicit methods. Practical GARK-ROS and GARK-ROW schemes of order up to four are constructed.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا