No Arabic abstract
Few-shot learning aims to correctly recognize query samples from unseen classes given a limited number of support samples, often by relying on global embeddings of images. In this paper, we propose to equip the backbone network with an attention agent, which is trained by reinforcement learning. The policy gradient algorithm is employed to train the agent towards adaptively localizing the representative regions on feature maps over time. We further design a reward function based on the prediction of the held-out data, thus helping the attention mechanism to generalize better across the unseen classes. The extensive experiments show, with the help of the reinforced attention, that our embedding network has the capability to progressively generate a more discriminative representation in few-shot learning. Moreover, experiments on the task of image classification also show the effectiveness of the proposed design.
Few-shot learning is an interesting and challenging study, which enables machines to learn from few samples like humans. Existing studies rarely exploit auxiliary information from large amount of unlabeled data. Self-supervised learning is emerged as an efficient method to utilize unlabeled data. Existing self-supervised learning methods always rely on the combination of geometric transformations for the single sample by augmentation, while seriously neglect the endogenous correlation information among different samples that is the same important for the task. In this work, we propose a Graph-driven Clustering (GC), a novel augmentation-free method for self-supervised learning, which does not rely on any auxiliary sample and utilizes the endogenous correlation information among input samples. Besides, we propose Multi-pretext Attention Network (MAN), which exploits a specific attention mechanism to combine the traditional augmentation-relied methods and our GC, adaptively learning their optimized weights to improve the performance and enabling the feature extractor to obtain more universal representations. We evaluate our MAN extensively on miniImageNet and tieredImageNet datasets and the results demonstrate that the proposed method outperforms the state-of-the-art (SOTA) relevant methods.
Few-shot classification aims to recognize unlabeled samples from unseen classes given only few labeled samples. The unseen classes and low-data problem make few-shot classification very challenging. Many existing approaches extracted features from labeled and unlabeled samples independently, as a result, the features are not discriminative enough. In this work, we propose a novel Cross Attention Network to address the challenging problems in few-shot classification. Firstly, Cross Attention Module is introduced to deal with the problem of unseen classes. The module generates cross attention maps for each pair of class feature and query sample feature so as to highlight the target object regions, making the extracted feature more discriminative. Secondly, a transductive inference algorithm is proposed to alleviate the low-data problem, which iteratively utilizes the unlabeled query set to augment the support set, thereby making the class features more representative. Extensive experiments on two benchmarks show our method is a simple, effective and computationally efficient framework and outperforms the state-of-the-arts.
While recent progress has significantly boosted few-shot classification (FSC) performance, few-shot object detection (FSOD) remains challenging for modern learning systems. Existing FSOD systems follow FSC approaches, ignoring critical issues such as spatial variability and uncertain representations, and consequently result in low performance. Observing this, we propose a novel textbf{Dual-Awareness Attention (DAnA)} mechanism that enables networks to adaptively interpret the given support images. DAnA transforms support images into textbf{query-position-aware} (QPA) features, guiding detection networks precisely by assigning customized support information to each local region of the query. In addition, the proposed DAnA component is flexible and adaptable to multiple existing object detection frameworks. By adopting DAnA, conventional object detection networks, Faster R-CNN and RetinaNet, which are not designed explicitly for few-shot learning, reach state-of-the-art performance in FSOD tasks. In comparison with previous methods, our model significantly increases the performance by 47% (+6.9 AP), showing remarkable ability under various evaluation settings.
Fine-grained action recognition is attracting increasing attention due to the emerging demand of specific action understanding in real-world applications, whereas the data of rare fine-grained categories is very limited. Therefore, we propose the few-shot fine-grained action recognition problem, aiming to recognize novel fine-grained actions with only few samples given for each class. Although progress has been made in coarse-grained actions, existing few-shot recognition methods encounter two issues handling fine-grained actions: the inability to capture subtle action details and the inadequacy in learning from data with low inter-class variance. To tackle the first issue, a human vision inspired bidirectional attention module (BAM) is proposed. Combining top-down task-driven signals with bottom-up salient stimuli, BAM captures subtle action details by accurately highlighting informative spatio-temporal regions. To address the second issue, we introduce contrastive meta-learning (CML). Compared with the widely adopted ProtoNet-based method, CML generates more discriminative video representations for low inter-class variance data, since it makes full use of potential contrastive pairs in each training episode. Furthermore, to fairly compare different models, we establish specific benchmark protocols on two large-scale fine-grained action recognition datasets. Extensive experiments show that our method consistently achieves state-of-the-art performance across evaluated tasks.
Few-shot learning requires to recognize novel classes with scarce labeled data. Prototypical network is useful in existing researches, however, training on narrow-size distribution of scarce data usually tends to get biased prototypes. In this paper, we figure out two key influencing factors of the process: the intra-class bias and the cross-class bias. We then propose a simple yet effective approach for prototype rectification in transductive setting. The approach utilizes label propagation to diminish the intra-class bias and feature shifting to diminish the cross-class bias. We also conduct theoretical analysis to derive its rationality as well as the lower bound of the performance. Effectiveness is shown on three few-shot benchmarks. Notably, our approach achieves state-of-the-art performance on both miniImageNet (70.31% on 1-shot and 81.89% on 5-shot) and tieredImageNet (78.74% on 1-shot and 86.92% on 5-shot).