No Arabic abstract
For modules over group rings we introduce the following numerical parameter. We say that a module A over a ring R has finite r-generator property if each f.g. (finitely generated) R-submodule of A can be generated exactly by r elements and there exists a f.g. R-submodule D of A, which has a minimal generating subset, consisting exactly of r elements. Let FG be the group algebra of a finite group G over a field F. In the present paper modules over the algebra FG having finite generator property are described.
A commutative ring R has finite rank r, if each ideal of R is generated at most by r elements. A commutative ring R has the r-generator property, if each finitely generated ideal of R can be generated by r elements. Such rings are closely related to Prufer domains. In the present paper we investigate some analogs of these concepts for modules over group rings.
Let $R$ be a commutative ring. We investigate $R$-modules which can be written as emph{finite} sums of {it {second}} $R$-submodules (we call them emph{second representable}). We provide sufficient conditions for an $R$-module $M$ to be have a (minimal) second presentation, in particular within the class of lifting modules. Moreover, we investigate the class of (emph{main}) emph{second attached prime ideals} related to a module with such a presentation.
A long standing problem, which has its roots in low-dimensional homotopy theory, is to classify all finite groups $G$ for which the integral group ring $mathbb{Z}G$ has stably free cancellation (SFC). We extend results of R. G. Swan by giving a condition for SFC and use this to show that $mathbb{Z}G$ has SFC provided at most one copy of the quaternions $mathbb{H}$ occurs in the Wedderburn decomposition of the real group ring $mathbb{R}G$. This generalises the Eichler condition in the case of integral group rings.
It is proved that the minimal free resolution of a module M over a Gorenstein local ring R is eventually periodic if, and only if, the class of M is torsion in a certain Z[t,t^{-1}]-module associated to R. This module, denoted J(R), is the free Z[t,t^{-1}]-module on the isomorphism classes of finitely generated R-modules modulo relations reminiscent of those defining the Grothendieck group of R. The main result is a structure theorem for J(R) when R is a complete Gorenstein local ring; the link between periodicity and torsion stated above is a corollary.
Let $R$ be a ring and $S$ a multiplicative subset of $R$. An $R$-module $P$ is called $S$-projective provided that the induced sequence $0rightarrow {rm Hom}_R(P,A)rightarrow {rm Hom}_R(P,B)rightarrow {rm Hom}_R(P,C)rightarrow 0$ is $S$-exact for any $S$-short exact sequence $0rightarrow Arightarrow Brightarrow Crightarrow 0$. Some characterizations and properties of $S$-projective modules are obtained. The notion of $S$-semisimple modules is also introduced. A ring $R$ is called an $S$-semisimple ring provided that every free $R$-module is $S$-semisimple. Several characterizations of $S$-semisimple rings are provided by using $S$-semisimple modules, $S$-projective modules, $S$-injective modules and $S$-split $S$-exact sequences.