Do you want to publish a course? Click here

Some ranks of modules over group rings

78   0   0.0 ( 0 )
 Added by Victor Bovdi A.
 Publication date 2021
  fields
and research's language is English




Ask ChatGPT about the research

A commutative ring R has finite rank r, if each ideal of R is generated at most by r elements. A commutative ring R has the r-generator property, if each finitely generated ideal of R can be generated by r elements. Such rings are closely related to Prufer domains. In the present paper we investigate some analogs of these concepts for modules over group rings.



rate research

Read More

For modules over group rings we introduce the following numerical parameter. We say that a module A over a ring R has finite r-generator property if each f.g. (finitely generated) R-submodule of A can be generated exactly by r elements and there exists a f.g. R-submodule D of A, which has a minimal generating subset, consisting exactly of r elements. Let FG be the group algebra of a finite group G over a field F. In the present paper modules over the algebra FG having finite generator property are described.
243 - John Nicholson 2018
A long standing problem, which has its roots in low-dimensional homotopy theory, is to classify all finite groups $G$ for which the integral group ring $mathbb{Z}G$ has stably free cancellation (SFC). We extend results of R. G. Swan by giving a condition for SFC and use this to show that $mathbb{Z}G$ has SFC provided at most one copy of the quaternions $mathbb{H}$ occurs in the Wedderburn decomposition of the real group ring $mathbb{R}G$. This generalises the Eichler condition in the case of integral group rings.
For a finite ring $R$, not necessarily commutative, we prove that the category of $text{VIC}(R)$-modules over a left Noetherian ring $mathbf{k}$ is locally Noetherian, generalizing a theorem of the authors that dealt with commutative $R$. As an application, we prove a very general twisted homology stability for $text{GL}_n(R)$ with $R$ a finite noncommutative ring.
222 - Amanda Croll 2013
It is proved that the minimal free resolution of a module M over a Gorenstein local ring R is eventually periodic if, and only if, the class of M is torsion in a certain Z[t,t^{-1}]-module associated to R. This module, denoted J(R), is the free Z[t,t^{-1}]-module on the isomorphism classes of finitely generated R-modules modulo relations reminiscent of those defining the Grothendieck group of R. The main result is a structure theorem for J(R) when R is a complete Gorenstein local ring; the link between periodicity and torsion stated above is a corollary.
Let $R$ be a commutative ring. We investigate $R$-modules which can be written as emph{finite} sums of {it {second}} $R$-submodules (we call them emph{second representable}). We provide sufficient conditions for an $R$-module $M$ to be have a (minimal) second presentation, in particular within the class of lifting modules. Moreover, we investigate the class of (emph{main}) emph{second attached prime ideals} related to a module with such a presentation.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا