No Arabic abstract
Backdoor attacks represent a serious threat to neural network models. A backdoored model will misclassify the trigger-embedded inputs into an attacker-chosen target label while performing normally on other benign inputs. There are already numerous works on backdoor attacks on neural networks, but only a few works consider graph neural networks (GNNs). As such, there is no intensive research on explaining the impact of trigger injecting position on the performance of backdoor attacks on GNNs. To bridge this gap, we conduct an experimental investigation on the performance of backdoor attacks on GNNs. We apply two powerful GNN explainability approaches to select the optimal trigger injecting position to achieve two attacker objectives -- high attack success rate and low clean accuracy drop. Our empirical results on benchmark datasets and state-of-the-art neural network models demonstrate the proposed methods effectiveness in selecting trigger injecting position for backdoor attacks on GNNs. For instance, on the node classification task, the backdoor attack with trigger injecting position selected by GraphLIME reaches over $84 %$ attack success rate with less than $2.5 %$ accuracy drop
Recent work has proposed the concept of backdoor attacks on deep neural networks (DNNs), where misbehaviors are hidden inside normal models, only to be triggered by very specific inputs. In practice, however, these attacks are difficult to perform and highly constrained by sharing of models through transfer learning. Adversaries have a small window during which they must compromise the student model before it is deployed. In this paper, we describe a significantly more powerful variant of the backdoor attack, latent backdoors, where hidden rules can be embedded in a single Teacher model, and automatically inherited by all Student models through the transfer learning process. We show that latent backdoors can be quite effective in a variety of application contexts, and validate its practicality through real-world attacks against traffic sign recognition, iris identification of lab volunteers, and facial recognition of public figures (politicians). Finally, we evaluate 4 potential defenses, and find that only one is effective in disrupting latent backdoors, but might incur a cost in classification accuracy as tradeoff.
Graph Neural Networks (GNNs) have achieved promising performance in various real-world applications. However, recent studies have shown that GNNs are vulnerable to adversarial attacks. In this paper, we study a recently-introduced realistic attack scenario on graphs -- graph injection attack (GIA). In the GIA scenario, the adversary is not able to modify the existing link structure and node attributes of the input graph, instead the attack is performed by injecting adversarial nodes into it. We present an analysis on the topological vulnerability of GNNs under GIA setting, based on which we propose the Topological Defective Graph Injection Attack (TDGIA) for effective injection attacks. TDGIA first introduces the topological defective edge selection strategy to choose the original nodes for connecting with the injected ones. It then designs the smooth feature optimization objective to generate the features for the injected nodes. Extensive experiments on large-scale datasets show that TDGIA can consistently and significantly outperform various attack baselines in attacking dozens of defense GNN models. Notably, the performance drop on target GNNs resultant from TDGIA is more than double the damage brought by the best attack solution among hundreds of submissions on KDD-CUP 2020.
Node injection attack on Graph Neural Networks (GNNs) is an emerging and practical attack scenario that the attacker injects malicious nodes rather than modifying original nodes or edges to affect the performance of GNNs. However, existing node injection attacks ignore extremely limited scenarios, namely the injected nodes might be excessive such that they may be perceptible to the target GNN. In this paper, we focus on an extremely limited scenario of single node injection evasion attack, i.e., the attacker is only allowed to inject one single node during the test phase to hurt GNNs performance. The discreteness of network structure and the coupling effect between network structure and node features bring great challenges to this extremely limited scenario. We first propose an optimization-based method to explore the performance upper bound of single node injection evasion attack. Experimental results show that 100%, 98.60%, and 94.98% nodes on three public datasets are successfully attacked even when only injecting one node with one edge, confirming the feasibility of single node injection evasion attack. However, such an optimization-based method needs to be re-optimized for each attack, which is computationally unbearable. To solve the dilemma, we further propose a Generalizable Node Injection Attack model, namely G-NIA, to improve the attack efficiency while ensuring the attack performance. Experiments are conducted across three well-known GNNs. Our proposed G-NIA significantly outperforms state-of-the-art baselines and is 500 times faster than the optimization-based method when inferring.
We study the realistic potential of conducting backdoor attack against deep neural networks (DNNs) during deployment stage. Specifically, our goal is to design a deployment-stage backdoor attack algorithm that is both threatening and realistically implementable. To this end, we propose Subnet Replacement Attack (SRA), which is capable of embedding backdoor into DNNs by directly modifying a limited number of model parameters. Considering the realistic practicability, we abandon the strong white-box assumption widely adopted in existing studies, instead, our algorithm works in a gray-box setting, where architecture information of the victim model is available but the adversaries do not have any knowledge of parameter values. The key philosophy underlying our approach is -- given any neural network instance (regardless of its specific parameter values) of a certain architecture, we can always embed a backdoor into that model instance, by replacing a very narrow subnet of a benign model (without backdoor) with a malicious backdoor subnet, which is designed to be sensitive (fire large activation value) to a particular backdoor trigger pattern.
Recent studies have shown that deep neural networks (DNNs) are highly vulnerable to adversarial attacks, including evasion and backdoor (poisoning) attacks. On the defense side, there have been intensive interests in both empirical and provable robustness against evasion attacks; however, provable robustness against backdoor attacks remains largely unexplored. In this paper, we focus on certifying robustness against backdoor attacks. To this end, we first provide a unified framework for robustness certification and show that it leads to a tight robustness condition for backdoor attacks. We then propose the first robust training process, RAB, to smooth the trained model and certify its robustness against backdoor attacks. Moreover, we evaluate the certified robustness of a family of smoothed models which are trained in a differentially private fashion, and show that they achieve better certified robustness bounds. In addition, we theoretically show that it is possible to train the robust smoothed models efficiently for simple models such as K-nearest neighbor classifiers, and we propose an exact smooth-training algorithm which eliminates the need to sample from a noise distribution. Empirically, we conduct comprehensive experiments for different machine learning (ML) models such as DNNs, differentially private DNNs, and K-NN models on MNIST, CIFAR-10 and ImageNet datasets (focusing on binary classifiers), and provide the first benchmark for certified robustness against backdoor attacks. In addition, we evaluate K-NN models on a spambase tabular dataset to demonstrate the advantages of the proposed exact algorithm. Both the theoretical analysis and the comprehensive benchmark on diverse ML models and datasets shed lights on further robust learning strategies against training time attacks or other general adversarial attacks.