No Arabic abstract
Nanoscale single-domain bar magnets are building blocks for a variety of fundamental and applied mesoscopic magnetic systems, such as artificial spin ices, magnetic shape-morphing microbots as well as magnetic majority logic gates. The magnetization reversal switching field of the bar nanomagnets is a crucial parameter that determines the physical properties and functionalities of their constituted artificial systems. Previous methods on tuning the magnetization reversal switching field of a bar nanomagnet usually rely on modifying its aspect ratio, such as its length, width and/or thickness. Here, we show that the switching field of a bar nanomagnet saturates when extending its length beyond a certain value, preventing further tailoring of the magnetization reversal via aspect ratios. We showcase highly tunable switching field of a bar nanomagent by tailoring its end geometry without altering its size. This provides an easy method to control the magnetization reversal of a single-domain bar nanomagnet. It would enable new research and/or applications, such as designing artificial spin ices with additional tuning parameters, engineering magnetic microbots with more flexibility as well as developing magnetic quantum-dot cellular automata systems for low power computing.
The nature of magnetization reversal in an isolated cylindrical nanomagnet has been studied employing time-resolved magnetoresistance measurement. We find that the reversal mode is highly stochastic, occurring either by multimode or single-step switching. Intriguingly, the stochasticity was found to depend on the alignment of the driving magnetic field to the long axis of the nanowires, where predominantly multimode switching gives way to single-step switching behavior as the field direction is rotated from parallel to transverse with respect to the nanowire axis.
Computational and experimental results on the thermally-induced magnetization reversal in single-domain magnetic nanoparticles are reported. The simulations are based on the direct integration of the Fokker-Planck equation that governs the dynamics of the magnetic moment associated with the nanoparticles. A mean field approximation is used to account for the influence of the dipolar interaction between nanoparticles. It is shown that the interactions can either speed up or slow down the reversal process, depending on the angle between the external magnetic field and the axis of easy magnetization. The numerical results are in good agreement with experimental measurements on cobalt-platinum nanoparticles.
We present theoretical studies of the intrinsic spin orbit torque (SOT) in a single domain ferromagnetic layer with Rashba spin-orbit coupling (SOC) using the non-equilibrium Greens function formalism for a model Hamiltonian. We find that, to the first order in SOC, the intrinsic SOT has only the field-like torque symmetry and can be interpreted as the longitudinal spin current induced by the charge current and Rashba field. We analyze the results in terms of the material related parameters of the electronic structure, such as band filling, band width, exchange splitting, as well as the Rashba SOC strength. On the basis of these numerical and analytical results, we discuss the magnitude and sign of SOT. Our results show that the different sign of SOT in identical ferromagnetic layers with different supporting layers, e.g. Co/Pt and Co/Ta, could be attributed to electrostatic doping of the ferromagnetic layer by the support.
We demonstrate a quasi ballistic switching of the magnetization in a microscopic mag-neto resistive memory cell. By means of time resolved magneto transport we follow the large angle precession of the free layer magnetization of a spin valve cell upon applica-tion of transverse magnetic field pulses. Stopping the field pulse after a 180 degree precession rotation leads to magnetization reversal with reversal times as short as 165 ps. This switching mode represents the fundamental ultra fast limit of field induced magnetization reversal.
A Mn30 molecular cluster is established to be the largest single-molecule magnet (SMM) discovered to date. Magnetization versus field measurements show coercive fields of about 0.5 T at low temperatures. Magnetization decay experiments reveal an Arrhenius behavior and temperature-independent relaxation below 0.2 K diagnostic of quantum tunneling of magnetization through the anisotropy barrier.The quantum hole digging method is used to establish resonant quantum tunneling. These results demonstrate that large molecular nanomagnets,having a volume of 15 nm^3, with dimensions approaching the mesoscale can still exhibit the quantum physics of the microscale.