Do you want to publish a course? Click here

Learning to Coordinate via Multiple Graph Neural Networks

59   0   0.0 ( 0 )
 Added by Zhiwei Xu
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

The collaboration between agents has gradually become an important topic in multi-agent systems. The key is how to efficiently solve the credit assignment problems. This paper introduces MGAN for collaborative multi-agent reinforcement learning, a new algorithm that combines graph convolutional networks and value-decomposition methods. MGAN learns the representation of agents from different perspectives through multiple graph networks, and realizes the proper allocation of attention between all agents. We show the amazing ability of the graph network in representation learning by visualizing the output of the graph network, and therefore improve interpretability for the actions of each agent in the multi-agent system.



rate research

Read More

156 - Tao Li , Guanze Peng , Quanyan Zhu 2021
Recent years have witnessed significant advances in technologies and services in modern network applications, including smart grid management, wireless communication, cybersecurity as well as multi-agent autonomous systems. Considering the heterogeneous nature of networked entities, emerging network applications call for game-theoretic models and learning-based approaches in order to create distributed network intelligence that responds to uncertainties and disruptions in a dynamic or an adversarial environment. This paper articulates the confluence of networks, games and learning, which establishes a theoretical underpinning for understanding multi-agent decision-making over networks. We provide an selective overview of game-theoretic learning algorithms within the framework of stochastic approximation theory, and associated applications in some representative contexts of modern network systems, such as the next generation wireless communication networks, the smart grid and distributed machine learning. In addition to existing research works on game-theoretic learning over networks, we highlight several new angles and research endeavors on learning in games that are related to recent developments in artificial intelligence. Some of the new angles extrapolate from our own research interests. The overall objective of the paper is to provide the reader a clear picture of the strengths and challenges of adopting game-theoretic learning methods within the context of network systems, and further to identify fruitful future research directions on both theoretical and applied studies.
We study how neural networks trained by gradient descent extrapolate, i.e., what they learn outside the support of the training distribution. Previous works report mixed empirical results when extrapolating with neural networks: while feedforward neural networks, a.k.a. multilayer perceptrons (MLPs), do not extrapolate well in certain simple tasks, Graph Neural Networks (GNNs) -- structured networks with MLP modules -- have shown some success in more complex tasks. Working towards a theoretical explanation, we identify conditions under which MLPs and GNNs extrapolate well. First, we quantify the observation that ReLU MLPs quickly converge to linear functions along any direction from the origin, which implies that ReLU MLPs do not extrapolate most nonlinear functions. But, they can provably learn a linear target function when the training distribution is sufficiently diverse. Second, in connection to analyzing the successes and limitations of GNNs, these results suggest a hypothesis for which we provide theoretical and empirical evidence: the success of GNNs in extrapolating algorithmic tasks to new data (e.g., larger graphs or edge weights) relies on encoding task-specific non-linearities in the architecture or features. Our theoretical analysis builds on a connection of over-parameterized networks to the neural tangent kernel. Empirically, our theory holds across different training settings.
Knowledge graphs (KGs) have helped neural models improve performance on various knowledge-intensive tasks, like question answering and item recommendation. By using attention over the KG, such KG-augmented models can also explain which KG information was most relevant for making a given prediction. In this paper, we question whether these models are really behaving as we expect. We show that, through a reinforcement learning policy (or even simple heuristics), one can produce deceptively perturbed KGs, which maintain the downstream performance of the original KG while significantly deviating from the original KGs semantics and structure. Our findings raise doubts about KG-augmented models ability to reason about KG information and give sensible explanations.
90 - Jiaqing Xie , Rex Ying 2021
Structural features are important features in a geometrical graph. Although there are some correlation analysis of features based on covariance, there is no relevant research on structural feature correlation analysis with graph neural networks. In this paper, we introuduce graph feature to feature (Fea2Fea) prediction pipelines in a low dimensional space to explore some preliminary results on structural feature correlation, which is based on graph neural network. The results show that there exists high correlation between some of the structural features. An irredundant feature combination with initial node features, which is filtered by graph neural network has improved its classification accuracy in some graph-based tasks. We compare differences between concatenation methods on connecting embeddings between features and show that the simplest is the best. We generalize on the synthetic geometric graphs and certify the results on prediction difficulty between structural features.
We formulate the problem of sampling and recovering clustered graph signal as a multi-armed bandit (MAB) problem. This formulation lends naturally to learning sampling strategies using the well-known gradient MAB algorithm. In particular, the sampling strategy is represented as a probability distribution over the individual arms of the MAB and optimized using gradient ascent. Some illustrative numerical experiments indicate that the sampling strategies based on the gradient MAB algorithm outperform existing sampling methods.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا