Do you want to publish a course? Click here

Visual Diagnostics for Constrained Optimisation with Application to Guided Tours

72   0   0.0 ( 0 )
 Added by H.Sherry Zhang
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

A guided tour helps to visualise high-dimensional data by showing low-dimensional projections along a projection pursuit optimisation path. Projection pursuit is a generalisation of principal component analysis, in the sense that different indexes are used to define the interestingness of the projected data. While much work has been done in developing new indexes in the literature, less has been done on understanding the optimisation. Index functions can be noisy, might have multiple local maxima as well as an optimal maximum, and are constrained to generate orthonormal projection frames, which complicates the optimization. In addition, projection pursuit is primarily used for exploratory data analysis, and finding the local maxima is also useful. The guided tour is especially useful for exploration, because it conducts geodesic interpolation connecting steps in the optimisation and shows how the projected data changes as a maxima is approached. This work provides new visual diagnostics for examining a choice of optimisation procedure, based on the provision of a new data object which collects information throughout the optimisation. It has helped to diagnose and fix several problems with projection pursuit guided tour. This work might be useful more broadly for diagnosing optimisers, and comparing their performance. The diagnostics are implemented in the R package, ferrn.



rate research

Read More

Dubins tours represent a solution of the Dubins Traveling Salesman Problem (DTSP) that is a variant of the optimization routing problem to determine a curvature-constrained shortest path to visit a set of locations such that the path is feasible for Dubins vehicle, which moves only forward and has a limited turning radius. The DTSP combines the NP-hard combinatorial optimization to determine the optimal sequence of visits to the locations, as in the regular TSP, with the continuous optimization of the heading angles at the locations, where the optimal heading values depend on the sequence of visits and vice versa. We address the computationally challenging DTSP by fast evaluation of the sequence of visits by the proposed Windowing Surrogate Model (WiSM) which estimates the length of the optimal Dubins path connecting a sequence of locations in a Dubins tour. The estimation is sped up by a regression model trained using close to optimum solutions of small Dubins tours that are generalized for large-scale instances of the addressed DTSP utilizing the sliding window technique and a cache for already computed results. The reported results support that the proposed WiSM enables a fast convergence of a relatively simple evolutionary algorithm to high-quality solutions of the DTSP. We show that with an increasing number of locations, our algorithm scales significantly better than other state-of-the-art DTSP solvers.
106 - Vivekananda Roy 2019
Markov chain Monte Carlo (MCMC) is one of the most useful approaches to scientific computing because of its flexible construction, ease of use and generality. Indeed, MCMC is indispensable for performing Bayesian analysis. Two critical questions that MCMC practitioners need to address are where to start and when to stop the simulation. Although a great amount of research has gone into establishing convergence criteria and stopping rules with sound theoretical foundation, in practice, MCMC users often decide convergence by applying empirical diagnostic tools. This review article discusses the most widely used MCMC convergence diagnostic tools. Some recently proposed stopping rules with firm theoretical footing are also presented. The convergence diagnostics and stopping rules are illustrated using three detailed examples.
Many real-world problems require to optimise trajectories under constraints. Classical approaches are based on optimal control methods but require an exact knowledge of the underlying dynamics, which could be challenging or even out of reach. In this paper, we leverage data-driven approaches to design a new end-to-end framework which is dynamics-free for optimised and realistic trajectories. We first decompose the trajectories on function basis, trading the initial infinite dimension problem on a multivariate functional space for a parameter optimisation problem. A maximum emph{a posteriori} approach which incorporates information from data is used to obtain a new optimisation problem which is regularised. The penalised term focuses the search on a region centered on data and includes estimated linear constraints in the problem. We apply our data-driven approach to two settings in aeronautics and sailing routes optimisation, yielding commanding results. The developed approach has been implemented in the Python library PyRotor.
Explanations shed light on a machine learning models rationales and can aid in identifying deficiencies in its reasoning process. Explanation generation models are typically trained in a supervised way given human explanations. When such annotations are not available, explanations are often selected as those portions of the input that maximise a downstream tasks performance, which corresponds to optimising an explanations Faithfulness to a given model. Faithfulness is one of several so-called diagnostic properties, which prior work has identified as useful for gauging the quality of an explanation without requiring annotations. Other diagnostic properties are Data Consistency, which measures how similar explanations are for similar input instances, and Confidence Indication, which shows whether the explanation reflects the confidence of the model. In this work, we show how to directly optimise for these diagnostic properties when training a model to generate sentence-level explanations, which markedly improves explanation quality, agreement with human rationales, and downstream task performance on three complex reasoning tasks.
105 - Kevin Lam , Zdravko Botev 2015
We consider the problem of accurately measuring the credit risk of a portfolio consisting of loss exposures such as loans, bonds and other financial assets. We are particularly interested in the probability of large portfolio losses. We describe the popular models in the credit risk framework including factor models and copula models. To this end, we revisit the most efficient probability estimation algorithms within current copula credit risk literature, namely importance sampling. We illustrate the workings and developments of these algorithms for large portfolio loss probability estimation and quantile estimation. We then propose a modification to the dynamic splitting method which allows application to the credit risk models described. Our proposed algorithm for the unbiased estimation of rare-event probabilities, exploits the quasi-monotonic property of functions to embed a static simulation problem within a time-dependent Markov process. A study of our proposed algorithm is then conducted through numerical experiments with its performance benchmarked against current popular importance sampling algorithms.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا